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Figure 1: Taylor coefficients of the pressure in term of the up-quaeneical potential. Results are obtained
with the p4fat3 action oi; = 4 (full) andN; = 6 (open symboils) lattices. We compare preliminary resiilts o
(2+1)-flavor a pion mass ah; ~ 220 MeV to previous results of 2-flavor simulations with aresponding
pion mass ofn, &~ 770 [A].

1. Introduction

A detailed and comprehensive understanding of the thermodynamics idfscarad gluons,
e.g. of the equation of state is most desirable and of particular importantteefphenomenology
of relativistic heavy ion collisions. Lattice regularized QCD simulations at rene-temperatures
have been shown to be a very successful tool in analyzing the nturipetive features of the
guark-gluon plasma. Driven by both, the exponential growth of the ctatipnal power of re-
cent super-computer as well as by drastic algorithmic improvements one ialrlewo simulate
dynamical quarks and gluons on fine lattices with almost physical masses.

At non-zero chemical potential, lattice QCD is harmed by the “sign-problerhi¢chivmakes
direct lattice calculations with standard Monte Carlo techniques at noneesrsity practically
impossible. However, for small values of the chemical potential, some metheelbban success-
fully used to extract information on the dependence of thermodynamic quartitithe chemical
potential. For a recent overview see, e[d. [1].

2. TheTaylor expansion method

We closely follow here the approach and notation used in Rlef. [2]. We wsttr a Taylor
expansion for the pressure in terms of the quark chemical potentials

[ j k
5 - 3 e (%) (%) (2 e
The expansion coefficient:i,‘{’j‘f'l’(s(T) are computed on the lattice at zero chemical potential, using
stochastic estimators. Some details on the computation are givEh[ih [3, 4]. Details cur-
rent data set and the number of random vectors used for the stoclsastanm noise method are
summarized in Tablg 1.

In Fig.[] we show results on the diagonal expansion coefficients witkecesp the up-quark
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N =4 N =6
T[MeV] | #Conf.| Sep.| #r.v. | T[MeV] | #Conf. | Sep.| #r.v.
176.04 | 1013 | 20 | 480 | 173.82 985 10 | 400
186.41 | 1550 | 30 | 480 || 179.63 910 10 | 400
190.83 | 1550 | 30 | 480 || 185.64 | 1043 10 | 400
195.37 | 1550 | 30 | 384 || 194.97 924 10 | 400
202.42 | 1350 | 30 | 384 || 201.35| 873 10 | 350
204.83 475 60 | 384 | 204.58 717 10 | 200
209.63 264 60 | 384 | 211.11 690 10 | 150
218.18 365 30 | 384 || 224.34 560 10 | 150
260.74 199 60 | 192 || 237.72 670 10 | 100
306.88 302 60 96 278.36 540 10 50
428.66 618 10 48 362.87 350 10 50
415.83 345 10 50

Table 1: Details on the calculation: The columns give from left tchtithe temperature values, the number
of evaluated configurations, the number of trajectories hiclvthese configurations are separated and the
number of random vectors used for the evaluation of the $rdoeN; = 4 and 6, respectively.

chemical potential up to the six ordm“njg;g with n=2,4,6). They have been evaluated on con-
figurations generated for a calculation of the equation of sfte [5], oltaiitd (2+1)-flavor of

the p4fat3 action[]6] and a pion massrof; ~ 220 MeV. Here the full symbols are frotd; = 4
lattices, while the open symbols denote results fiigm= 6 lattices. The spatial lattice size has
been chosen to Bé,; = 4N;, which is known to be large enough in order to suppress finite volume
effects. Considering cut-off effects, we find that they are small argihoifar magnitude as those
found for the trace anomal}j[5]. This was already anticipated by the asalf/the cut-off correc-
tions that arises in the free gas limfi} [7]. Similar results for the expansioricieets have been
also obtained with the asqtdd [8] and the standard adtjon [9].

We also compare our preliminary results for (2+1)-flavor QCD and a piossnoém;; ~
220 MeV, with previously obtained result of 2-flavor QCD amg ~ 770 MeV [2] (also p4fat3
andN; = 4). It is apparent from Fid]1 that the critical temperature for these twticpar sets
of lattice parameter differ substantially. In fact, the transition temperatuneases from about
225 MeV for the heavier mass calculations to about 200 MeV for the lighter oedeslations.
Note, that thosd, values are th&\; = 4 values, which of course are still influenced by the finite
lattice spacing. Furthermore, we find from Fij. 1 that the quark numbemuéitions of second,
fourth and sixth order, which are related to these expansion coefficiratsase with decreasing
guark mass.

Alternatively to the quark chemical potentials one can introduce chemicahtdtefor the
conserved quantities baryon numligrelectric chargeQ and strangenesS (Ug o s), which are
related tou, 4 s via

1 2 11 11
Hu=3Hs+3Ho,  Ho=3le—ZHo,  Hs=3Hs—zlo— s (2.2)
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Figure 2: Taylor coefficients of the pressure, the energy and entrgmsitly with respect to the baryon
chemical potential. Results are obtained with the p4fat®aonN; = 4 (full) andN; = 6 (open symbols)
lattices.

By means of these relations the coefficiemﬁﬁgs of the pressure expansion in termsigfg s are
easily obtained, in analogy to Hg.J2.1

Foerem(F) (9) (5"

For the rest of this article we will restrict ourselves to the cas@®@f us = 0, thus we will
suppress in the following the indices that are related to these chemical pistefatam the pressure
we immediately obtain the baryon number densigy which is given by the derivative gb/T*
with respect to the baryon chemical potentigl and can be expressed in term of the expansion

coefficientsc®, we have
g o Mg\ "1
T2 nGy(T) (*T) -

Using standard thermodynamic relations we can also calculate the expapsificients of the
trace anomaly or equivalently the difference between energy densithesaltimes the pressure,

(2.3)

(2.4)

E-3p_ < =5 Hs\B
= T —_— 2.
=y am(T) (2.5)
where the expansion coefficierd$ are given by
dcB(T)
~B _ n
G =T (2.6)

Combining Eqs| 2|3, 3.5, afid P.6 we then obtain the Taylor expansions fenéngy and entropy
densities [10]

ri =3 ERm+am) (F) =3 a(F)" @7
s _crppene :ni« —)EB(T) +E(T)) (‘.‘FB)”E”_ s (%) (2.8)
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At present, we calculate the expansion coefficiefitsom the coefficientgS, in accordance with
Eq.[2.6, by performing th& derivative numerically, which introduces a small systematic error.

In Fig. [2 we show the second, fourth and sixth order expansion ceetticof the pressure,
energy density and entropy density as given in Eg$. 2.9 ahd 2.8, obtaitiethe p4fat3 action.
Full symbols are fronN; = 4 lattices, while the open symbols denote results fiye= 6 lattices.
We again find small cut-off effects, however, higher order deriestiof pressure, energy density
and entropy density with respect t are still very preliminary, as the error bars are large. This
is especially true for the results frold; = 6 lattices. Nevertheless, the overall pattern of the
coefficients is in agreement with expectations based on an analysis of gidasihehavior of the
free energy, making use of an appropriate scaling Ansatz.

We find that the magnitude of the coefficients is decreasing drastically witedsicrg order,
for all analyzed temperatures. Thus an approximation of the equationteffetasmall baryon
chemical potential by means of a fourth or sixth order expansion seemgusttiied. In general,
an analysis of the radius of convergence of such a Taylor series reaf igterest for an analysis
of the QCD phase diagram, since the radius of convergence is boundeel location of the QCD
critical point as well as by any first order phase transition line (seeBec.

3. Theisentropic equation of state

By using the Taylor expansion coefficients of the baryon number{(EpjaBdientropy density
(Eq.[2-8), we can compute the ratio of entropy per baryon number asdoé T andpg. The 0-th
order coefficient for the entropy density has been taken ffbm [3¥ir@pnumerically for a constant
ratio of entropy per baryon numbey,ng, we determine isentropic trajectories in {ffe ug)-plane.
These trajectories are relevant for the description of matter created fivistia heavy ion colli-
sions. After equilibration the dense medium created in such a collision willnekang lines of
constant entropy per baryon. It then is of interest to calculate thernanaigrguantities along such
isentropic lines.

We find that isentropic expansion at high temperature is well represepntateb of constant
us/T down to temperatures close to the transitidny: 1.2Ty. In the low temperature regime we
observe a bending of the isentropic lines in accordance with the expesstegbitic low temper-
ature behavior. The isentropic expansion lines for matter created at@RSpond ts/ng ~ 45
while the isentropes at RHIC correspondstog ~ 300. The energy range of the AGS which also
corresponds to an energy range relevant for future experimemdriFarmstadt is well described
by s/ng ~ 30. These lines are shown in Fg. 3 (left) together with data points chaeetethe
chemical freeze-out of hadrons measured at AGS, SPS and RHigienelhese data points have
been obtained by comparing experimental results for yields of varioushagecies with hadron
abundances in a resonance [1LL, 12]. The solid curve showenamanological parameteri-
zation of thesdreeze-out dat#fLd]. In general our findings for lines of constasfng are in good
agreement with phenomenological model calculations that are based omediors of ideal gas
and resonance gas equations of state at high and low temperaturetivebp3, [14].

Results shown in Fig]3 are based on a fourth order expansion of tkeupee We find,
however, that the truncation error is small, i.e. the results change only little waeonsider also
the sixth order term img. In accordance with the good convergence of our results, we findaltha
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Figure 3: On the left panel we show Isentropic trajectories in tfie{ug)-diagram, corresponding to
s/ng = 300, 45,30 respectively. Open symbols are folp = 6, obtained by a 4th order Taylor expansion
of the pressure. Filled symbols are frdwp = 4 calculations. We also show freeze-out data, as well as a pa-
rameterization of the freeze-out curve froE|[12]. Corregping free gas limits argg/T = 0.21,1.40,2.13
respectively and are indicated by solid lines. On the rigingd we plot the the ratio of pressure and energy
density along those trajectories.

trajectories shown in Fig] 3 (left) are well within the radius of convergeritke Taylor series. At
present we estimate the radius of convergence of the pressure séfiggTo®'>2.7. The cut-off
effects can be estimated by comparing open and full symbols.

We now proceed and calculate energy density and pressure on lineagthit entropy per
baryon number using our Taylor expansion results ugtp). Again we take the O-th order
coefficients from[[5]. We find that both quantities obtain corrections ofiatt0% at AGS (FAIR)
energies$/ng = 30) and high temperatures. The dependenaeasfd p ons/ng cancels to a large
extent in the ratigp/¢e, which is most relevant for the analysis of the hydrodynamic expansion of
dense matter. This may be seen by considering the leadijpg) correction,

P 1 1g&-—3po C2 &1 (Hs\?

= —— 14+ |—— = = . 3.1

e 3 3 g +so—3po & (T) (3.1)
In Fig. [3 (right) we showp/¢ as function energy density along our three isentropic trajectories.
The softest point of the equation of state is found to( pée)min ~ 0.07— 0.09, for N; = 4 and
6 respectively. Within our current numerical accuracy it is independes/ng. Similar results

for the asqtad action have been obtainedn [8]. However, as our dateliimipary, the analysis
clearly suffers from insufficient statistics, which is in particular true fard; = 6 results.

4. Hadronic Fluctuations

Quark number fluctuations are related to the derivatives of QCD partitianifumwith respect
to the quark chemical potentials by the fluctuation-dissipation theorem. Ther Eaypansion co-
efficientsc}f’flf, as defined in E4. 3.1, can thus be directly interpreted as quark numtterations
at u = 0. However, quark fluctuations can not be detected directly in experirdeeto confine-

ment. Therefore we will consider fluctuations in terms of hadronic quanwmbers, i.e. baryon
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Figure 4: Quadratic and quartic fluctuations of baryon number, @lectrarge and strangeness, normalized
by their corresponding Stefan-Boltzmann value. The requitN; = 4 lattices (open symbols) ardf = 6
lattices (full symbols) are in good agreements.

numberB, electric charge) and strangenesS which are more easily obtained by experiment.
These fluctuations are related with the hardonic Taylor expansion ceeﬂac,BJQk’ , as given in
Eq.[2.3.

In general, the quadratic fluctuatiog$ at zero chemical potentials can be obtained from the
second order coefficief

a1 3%Inz 1
27 VT3 (ux/T)2 T VT3

((8Nx)?)o , (4.1)
HBQs=0

wheredN = N — (N) denotes the normalized net-density gnd)o indicates that the expectation
value has been taken pg o s = 0. Under such conditions, baryon number, electric charge and
strangeness vanish, and we ha= N. We define

1
X _
X2 =73

Similarly, we obtain the quartic charge fluctuations by

(NZ)o = 2¢5 (4.2)

1
XA>1( VT3 (<NX> 3<N)2(>(2)) = 24031( ) (43)
and correlations among two conserved charges by
1
X2 = s ((NxNv)o — (Nx)o(Ny)o) = ¢’ . (4.4)
1
X22 = s ((NKNG)o = (NZDo(NF)o — 2(NxNy)§) = 4c7 (4.5)

whereX,Y € {B,Q,S}.

In Fig.[4 we show results for quadratic and quartic fluctuation8,d andS. The quadratic
quctuannsXB Q3 rise rapidly in the transition region where the quartic quctuatix)fig’S show a
peak. The peak height is more pronounced for the baryon numberdtisria than for fluctuations
of the strange quarks.
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We compare the results obtained on lattices with temporal ektert4 and 6. We notice that
they are in general compatible with each other, especially in the high tempepatase, where both
quadratic and quartic fluctuations approach the Stephan-Boltzmann limityyuilike transition
temperature has been previously determined tdbe 202 MeV and 196 MeV o\, = 4 and
6 lattices respectively[[15]. We thus conclude that at temperatures ot dt&¥, and higher,
quadratic and quartic fluctuations Bf Q andSare well described by the ideal massless quark gas.

At low temperature, hadrons are the relevant degrees of freedomhakiten resonance gas
(HRG) model has been shown to provide a good description of thermaitmms at freeze-out. We
thus compare the fluctuations in the low temperature phase with a HRG moded, wéénclude
all mesons and baryons with masses smaller than 2.5 GeV from the particleodita b

In Fig. B, we show the ratio of quartic and quadratic fluctuationsBo6 and Q. In the
HRG model,)(“?/)(é3 is easily obtained in the Boltzmann approximation, which is valid for a dilute
baryonic gas in the temperature range of interest. One finds that all detdi® dadron mass
spectrum and temperature dependence cancel and the result is aGaigta by the unit square
of the baryonic charge (one for all baryons). This is in fact repcedly the lattice results shown
in Fig. B (top left).

The ratio of quartic and quadratic fluctuations ®andQ are more complicated even in the
Boltzmann limit, since hadrons with different electric/strange charge gigeaidifferent contribu-
tions to the corresponding fluctuations. For strangeness fluctuatiaven $h Fig.[b (bottom), the
Boltzmann limit is still a good approximation; but for electric charge fluctuatitmes pion mass
plays an important role. In order to check for the sensitivity of electricgehfluctuations on the
pion mass, we show in Fif] 5 (top right) results of a HRG model calculation wigsipdl pion
masses and without the pion sector, i.e. for infinitely heavy pions.

In Fig. B, we show the various correlatiog§.?, x25 and x2° normalized to quadratic fluc-
tuationsx® and x? respectively. The results frofd; = 4 and 6 lattices agree with each other
very well, and they are compared with the HRG model in the low temperature pindsStephan-
Boltzmann limit in the high temperature phase. We find that the correlationsiueggdhe quali-
tative behaviour of the HRG model beldly and again start to agree with the free gas predictions
for T>1.5T.

5. Radius of convergence

Whenever an observable gg > 0 is approximated by a truncated Taylor series, expanded
aroundug = 0, an analysis of the convergence behavior of the series is, of ¢couesalatory. In
addition, the convergence radius of such a serieg.@sgiven in Eq.[2]3 for the pressure, is of
great interest for the structure of the QCD phase diagram. By definitiemattius of convergence
is the distance to the closest singularity in {ffe ug)-plane. It is bounded by the QCD critical
point as well as by any line of first order transitions and could thus pecaidinteresting method
to determine the QCD critical point. This method was proposed in Ref. [3] ascapwplied in the
case of standard staggered fermions in Réf. [9].

One way to evaluate the radius of convergepds by means of the formula

p(T) :r!im»pn(T), with Pn(T) = /CB(T)/cB ,(T). (5.1)
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Figure 5: Ratio of quartic and quadratic fluctuations of baryon num(i@y strangenessy and electric
charge Q). The two curves of the HRG model in the top right figure cqooexl to charge fluctuations with
physical pions (upper) and infinitely heavy pions (loweneyr

In practice, we can not perform the linmit— oo, instead we consider the first few approximations
pn(T), with n<6. The second approximation far(T) is given bypo(T) = /cB(T)/cB(T) =

V12/1/xB/x5. We see thaxZ/xE as shown in Fig[]5 is closely related to the radius of con-
vergence. If this quantity develops a peak, which increases abovesbaance gas value of
x5/ xE = 1, one might expect the critical point to be found gg,/T)°"<+/12. Of course, higher
order approximations for the radius of convergence are neededstastibte such an estimate and
to establish the existence of a critical point.

Our results are at present not conclusive, as\the: 6 data shown in Fid] 5(left) suffers from
insufficient statistics and temperature resolution. Note, however, thagtkampthe baryon number
fluctuation ratiox?/ x2 will develop in the chiral limit as can be seen from a scaling analysis of the
free energy and has recently also shown in a chiral model calculdtifpn [16

6. Conclusions

We have calculated corrections to the equation of state arising from aemoraryon chemi-
cal potential, by means of a Taylor expansion of the pressure. Within #meefivork we calculated
the isentropic equation of state along lines of constant entropy per banyober §/ng) for RHIC,
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Figure 6: Pairwise correlatios of the conserved charges baryon nui)e electric charge (Q) and
strangeness (S) as function of the temperature, normalzedde quadratic fluctuations of B and Q re-

spectively.

SPS and AGS (FAIR) energies. Within our current, preliminary, analysiind the softest point
of the equation of state to be independens/ofs.

Furthermore, we have analyzed the quadratic and quartic fluctuatioasyafrbnumber, elec-
tric charge and strangeness, as well their ratios. We find these quantitiesrtgood agreement
with the free gas results at temperatureof 1.5T.. Below T, qualitative features of the res-
onance gas are reproduced. This ratio for the baryon number is cledated to the second
approximation of the convergence radius of the Taylor series of theymeesvith respect to the
baryon chemical potential.
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