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We study thermodynamics of SU(3) gauge theory at fixed scales on the lattice, where we vary
temperature by changing the temporal lattice size Nt = (Tat)

−1. In the fixed scale approach, finite
temperature simulations are performed on common lattice spacings and spatial volumes. Con-
sequently, we can isolate thermal effects in observables from other uncertainties, such as lattice
artifact, renormalization factor, and spatial volume effect. Furthermore, in the EOS calculations,
the fixed scale approach is able to reduce computational costs for zero temperature subtraction
and parameter search to find lines of constant physics, which are demanding in full QCD simu-
lations. As a test of the approach, we study the thermodynamics of the SU(3) gauge theory on
isotropic and anisotropic lattices. In addition to the equation of state, we calculate the critical
temperature and the static quark free energy at a fixed scale.
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1. Introduction

Since finite temperature (T > 0) lattice QCD is performed on lattice with a temporal extent
Nt = 1/aT , qualitative calculations at high T may require lower simulation cost than that at T = 0.
However quantitative systematic studies at T > 0 need huge simulation cost often more than that at
T = 0. Because such study requires T = 0 calculations at wide range of lattice scale. It is a reason
why recent large scale thermodynamics calculations are often performed with the Staggered type
quark formulations [1], which needs lower computational cost than that with Wilson type formu-
lations [3], the domain wall and overlap quarks are all the more costly. To make matters worse,
some Wilson type quarks sometimes cause some problems at coarse lattice, e.g. nonperturbative
clover coefficient cSW is reliably determined at a ∼ 0.1 fm or finer [4], and the domain wall quarks
encounter with strong residual quark mass effects at coarse lattice [5]. In spite of the difficulties,
results at T > 0 with the Wilson type quark formulations are desired, because the Staggered type
quarks suffer from problems of the flavor symmetry violation and the rooted Dirac operators.

Therefore we propose an alternative fixed scale approach to study thermodynamics of QCD,
where we vary T by varying the temporal lattice size Nt = (Tat)

−1 instead of the conventional fixed
Nt approach. In the fixed scale approach, T = 0 results are common for each Nt (T ) simulations. It
may be able to reduce total simulation cost drastically. Furthermore, common parameters (except
for Nt ) enable us to investigate pure thermal effects of observables without obstacles coming from
changing lattice spacing and spatial volume effects.

In this report, we test the approach in the SU(3) gauge theory on isotropic and anisotropic lat-
tices. Our lattice action and some details of the EOS calculation are given in Sect.2.1 and Sect.2.2.
Results of EOS are presented in Sects.2.3 and 2.4. The Tc and the static quark free energy are
discussed in Sect.3 and 4. We conclude in the last section.

2. Equation of state

2.1 T-integration method

In the fixed scale approach, to calculate the pressure non-perturbatively, we propose a new
method, “the T-integral method” [6] :

p
T 4 =

∫ T

T0

dT
ε −3p

T 5 (2.1)

based on another thermodynamic relation valid at vanishing chemical potential:

T
∂

∂T

( p
T 4

)

=
ε −3p

T 4 . (2.2)

The initial temperature T0 is chosen such that p(T0) ≈ 0. Calculation of ε − 3p requires the beta
functions just at the simulation point, but no further Karsch coefficients are necessary. Since T is
restricted to have discrete values, we need to make an interpolation of (ε −3p)/T 4 with respect to
T .

Since the coupling parameters are common to all temperatures, our fixed scale approach with
the T -integral method has several advantages over the conventional approach; (i) T = 0 subtractions
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can be done by a common T = 0 simulation, (ii) the condition to follow the LCP is obviously
satisfied, and (iii) the lattice scale as well as beta functions are required only at the simulation point.
As a result of these, the computational cost needed for T = 0 simulations is reduced drastically.

When we adopt coupling parameters from T = 0 spectrum studies, the values of Nt around
and below the critical temperature Tc are much larger than those used in conventional fixed Nt

studies. For example, at a ≈ 0.07 fm, T ∼ 175 MeV is achieved by Nt ∼ 16. Therefore, for
thermodynamic quantities around and below Tc, we can largely reduce the lattice artifacts over the
conventional approach, with much smaller total computational cost. This is also a good news for
phenomenological applications of the EOS, since the temperature achieved in the relativistic heavy
ion collision at RHIC and LHC will be at most up to a few times the Tc [7]. We note here that, as T
increases, Nt becomes small and hence the lattice artifact increases. Therefore, our approach is not
suitable for studying how the EOS approaches the Stephan-Boltzmann value in the high T limit.

2.2 Lattice action

We study the SU(3) gauge theory with the standard plaquette gauge action on an anisotropic
lattice with the spatial (temporal) lattice size and scale Ns (Nt ) and as (at ), respectively. The lattice
action is given by

S = βξ0 ∑
x

3

∑
i=1

[

1−
1
3

ReTrUi4(x)
]

+
β
ξ0

∑
x

3

∑
i> j=1

[

1−
1
3

ReTrUi j(x)
]

(2.3)

def.
= 3N3

s Nt β
(

ξ0Pt +ξ−1
0 Ps

)

(2.4)

where Uµν(x) is the plaquette in the µν plane and β and ξ0 are the bare lattice gauge coupling and
bare anisotropy parameters. The trace anomaly is calculated by

ε −3p
T 4 =

N3
t

N3
s ξ 3 as

(

∂β
∂as

)

ξ

〈

(

∂S
∂β

)

ξ

〉

(2.5)

=
3N4

t

ξ 3

〈

(

as
∂β
∂as

)

ξ

[

{

1
ξ0

Ps +ξ0Pt

}

−

β
ξ0

(

∂ξ0

∂β

)

ξ

{

1
ξ0

Ps−ξ0Pt

}

]〉

(2.6)

with ξ = as/at the renormalized anisotropy. as(∂β/∂as) is the beta function. ∂ξ0/∂β vanishes on
isotropic lattices.

2.3 EOS on isotropic lattice

Our simulation parameters are listed in Table 1. On isotropic lattices, we calculate EOS on
three lattices to study the volume and lattice spacing dependences. The ranges of Nt correspond
to T = 210–700 MeV for the sets i1 and i2, and T = 220–730 MeV for i3, to be compared with
Tc ∼ 290 MeV. The set a2 will be discussed later. The T = 0 subtraction is performed with Nt = 16
for i1 and i2, and with Nt = 22 for i3. We generate up to a few millions configurations using the
pseudo-heat-bath algorithm. Statistical errors are estimated by the Jackknife analysis. appropriate
bin sizes, which strongly depend on T . Typically, bin size of a few thousands configurations are
necessary near Tc, while a few hundreds are sufficient off the transition region.
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set β ξ Ns Nt r0/as as[fm] L[fm] a(dg−2/da)

i1 6.0 1 16 3-10 5.35(+2
−3) 0.093 1.5 -0.098172

i2 6.0 1 24 3-10 5.35(+2
−3) 0.093 2.2 -0.098172

i3 6.2 1 22 4-13 7.37(3) 0.068 1.5 -0.112127
a2 6.1 4 20 8-34 5.140(32) 0.097 1.9 -0.10704

Table 1: Simulation parameters on isotropic and anisotropic lattices. On isotropic lattices, we adopt r0/a of
[8], and the beta function of [9]. Anisotropic r0/as is from [10], and the beta function is calculated in [6].
Lattice scale as and lattice size L = Nsas are calculated with r0 = 0.5 fm.
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Figure 1: (Left) Trace anomaly on isotropic lattices. The dotted lines are natural cubic spline interpolations.
Horizontal errors due to the lattice scale are smaller than the symbols. (Right) The energy density and the
pressure on isotropic lattices.

Figure 1 (Left) shows (ε − 3p)/T 4. Dotted lines in the figure are the natural cubic spline
interpolations. At and below Tc, lattice size dependence is visible between the sets i1 (L ≈ 1.5 fm)
and i2 (2.2 fm). On the other hand, the lattice spacing dependence is small between i1 (a ≈ 0.093
fm) and i3 (0.068 fm). At higher T , (ε − 3p)/T 4 on three lattices show good agreement. The
integration of (2.1) is performed numerically using the natural spline interpolations shown in Fig.1
(Left). For the initial temperature T0 of the integration, we linearly extrapolate the (ε−3p)/T 4 data
at a few lowest T ’s because the values of (ε −3p)/T 4 at our lowest T are not exactly zero. In this
study, we commonly take T0 = 150 MeV as the initial temperature which satisfies (ε −3p)/T 4 = 0,
and estimate the integration from T0 to the lowest T by the area of the triangle. Statistical errors
for the results of integration are estimated by a Jackknife analysis [11]. Note that the error in the
lattice scale do not affect the dimension less quantity p/T 4.

In Fig.1 (Right), we summarize the results of EOS on isotropic lattices. ε/T 4 is calculated
combining the results of p/T 4 and (ε − 3p)/T 4. Since the lattice parameter dependence of (ε −

3p)/T 4 is small except for the vicinity of Tc, we find that EOS has a similar shape except for the
vicinity of Tc. Near and below Tc, we observe a sizable finite volume effect between L ≈ 1.5 fm
and 2.2 fm, while the lattice spacing effects are not so. At large T , we note a slight tendency that
p and ε decrease as the lattice size becomes larger and the lattice spacing becomes smaller. Our
results are qualitatively consistent with the previous results by the conventional fixed Nt method
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Figure 2: (Left) The trace anomaly on the anisotropic lattice (a2) and the isotropic lattice (i2). Dotted lines
show the cubic spline interpolation. (Right) The EOS on the anisotropic lattice.

[9], but with much reduced lattice artifacts around Tc due to much larger Nt there.

2.4 EOS on anisotropic lattice

The anisotropic lattice with the temporal lattice finer than the spatial one is expected to improve
the resolution of T without much increasing the computational cost. To further test the systematic
error due to the resolution of T , we perform the study with the T -integral method on an anisotropic
lattice with the renormalized anisotropy ξ = 4. The simulation parameters are given as the set a2
in Table 1, which are the same as those adopted in [10]. We vary Nt = 34–8 corresponding to
T = 240–1010 MeV. The T = 0 subtraction is performed with Nt = 80. We generate up to a few
millions configurations. The beta function as(∂β/∂as)ξ with ξ = 4 has calculated in our paper [6],
and its value at our simulation point is given in Table 1. For (∂ξ0/∂β )ξ we adopt the result of [12].

In Fig. 2 (Left), we compare the trace anomaly obtained on the anisotropic lattice with that on
the isotropic lattice with similar as and L (the set i2). We find that the results are generally consistent
with each other except for around Tc. We note a systematic tendency that the trace anomaly on the
anisotropic lattice is slightly lower than that on the isotropic lattice. According to this tendency,
the pressure on the anisotropic lattice is slightly smaller than that on the isotropic lattice at high T .
The tendency may be understood by the smaller lattice artifact due to the temporal lattice spacing
on anisotropic lattices, since lattice artifacts due to temporal lattice spacing are larger than that by
the spatial lattice spacings in thermodynamic quantities [13]. Finally, we summarize our results
of EOS on the anisotropic lattice in Fig. 2 (Right). We find that they are consistent with those on
isotropic lattices.

3. Transition temperature

Here we consider a possibility to compute the Tc in the fixed scale approach. Tc is determined
by studying temperature dependence of order parameters. Strictly speaking, such temperature de-
pendence should be separated from other effects, such as renormalization, lattice artifacts, and
spatial volume dependence. In the fixed scale approach, we can easily isolate the thermal effect on
the observables. On the other hand, the resolution of T is restricted by descrete Nt .
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set β ξ Ns Nt r0/as as[fm] L[fm]
a2-1 6.1 4 20 26-30 5.140(32) 0.097 1.9
a2-2 6.1 4 30 26-30 5.140(32) 0.097 2.9
a2-3 6.1 4 40 26-30 5.140(32) 0.097 3.9

Table 2: Simulation parameters on anisotropic lattices to study volume dependence of the susceptibility of
the Polyakov loop.
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Figure 3: (Left,Center) Polyakov loop and its susceptibility on the anisotropic lattice. (Right) Static quark
free energy on the anisotropic lattice.

We calculate the Polyakov loop and its susceptibility on the anisotropic lattice. In addition
to the lattices prepared for the EOS calculation, we generated different spatial volume lattices to
study its finite size scaling. The parameters we adopted are listed in Table 2. Since the SU(3) gauge
theory has the global Z(3) symmetry, we calculate the real part of Z(3)-rotated Polyakov loop and
its susceptibility. Our results are shown in the left and center pannels of Fig.3. Unlike the case of
conventional fixed Nt studies, the renormalization factor is common to all temperatures. From the
susceptibility data we can find that the transition point locates at Nt ≈ 28 corresponds to Tc = 280-
300 MeV from the r0 scale setting. We also find that the peak height of the susceptibility increases
with increasing the system volume, in accordance with the 1st order nature of the transition.

4. Static quark free energy

Finally, we study the static quark free energy V (r) in the fixed scale approach. In conventional
fixed Nt studies, the additive renormalization constant for V (r) is diffrent for each T because the
lattice spacing is different. Assuming that the short distance physics is independent of T , the
constant term is conventionally adjusted by hand such that V (r) around the smallest r coinside
with each other.

In the fixed scale approch, on the other hand, the common lattice spacing for all T implies that
the constant term in V (r) should be common too. Therefore, we can purely study the T effects
without adjusting the constant term. In Fig.3 (Right) we show our results of V (r) for the color
singlet channel on the anisotropic lattice, without adjusting the constant term. The solid curve in
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the figure is a fit result of T = 0 potential. We find that V (r) at different temperatures converge to
a common curve at short distances. We thus have confirmed the expectation that the short distance
physics is independent of T .

5. Conclusions

We proposed a fixed scale approach to study the QCD thermodynamics on the lattice. In
this approach, T is varied by changing the temporal lattice size Nt at a fixed lattice scale. To test
the method, we applied it to the SU(3) gauge theory on isotropic and anisotropic lattices. We
found that the T -integral method to calculate the EOS works quite well. The main advantage
of our approach is that the computational cost for T = 0 simulations, which are the most time
consuming calculations in the conventional fixed Nt approaches, can be drastically reduced. We
may even borrow configurations of existing high precision simulations at T = 0. The approach
is applicable to QCD with dynamical quarks too. We are currently investigating EOS in 2 + 1
flavor QCD with non-perturbatively improved Wilson quarks, using the configurations by the CP-
PACS/JLQCD Collaboration [14]. With these fine lattices, the lattice artifacts around Tc are much
smaller than the conventional fixed Nt approaches. We are further planning to use the PACS-CS
configurations just at the physical point [15].
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