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I present a study of the equation of state in quenched QCD, discussing some systematic effects re-

lated to the lattice geometry. In particular, I comment on the modification of the Stefan-Boltzmann

law for a gas of free gluons in a finite system, and study the impact it might have on numerical

results at high temperatures, for the typical parameters ofcurrent lattice simulations. Finally, I

apply the results of this study to the analysis of data obtained from simulations of SU(N) gauge

theories withN > 3 colors, in a temperature range up to 3Tc, where infrared effects appear to be

under control. Preliminary results for various thermodynamic observables for SU(4), SU(5) and

SU(6) gauge theories are found to be close to each other and to thosefor SU(3), in agreement

with other similar studies. This may be relevant for the theoretical description of the QCD plasma.
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1. Introduction and motivation

Experiments at temperaturesT up to a few times the deconfinement temperatureTc reveal a
strongly interacting system [1 – 4], which behaves as a nearly perfect fluid [5]. In this regime,
lattice calculations are essentially the only tool to determine the equation of state (EoS) from the
first principles of QCD.

In particular, for the gluon sector of the QCD plasma, the lattice results show strong deviations
from the Stefan-Boltzmann (SB) limit, with a large deficit in the entropy and pressure [6]. This led
to conjecture [7] that the gluon plasma may admit an effective description based on the AdS/CFT
correspondence [8]. Together with recent efforts to apply similar gauge/gravity techniques to build
a holographic dual of QCD [9], this has triggered interest in lattice studies of SU(N) Yang-Mills
thermodynamics withN > 3 colors [10 – 12].

One aspect of the SU(N > 3) simulations is that, in general, they can be carried out using
smaller lattices than those needed for SU(3)—see, e.g. refs. [13, 14]. This should not pose a prob-
lem of infrared (IR) effects, because for temperatures of the order of a few timesTc finite-volume ef-
fects are expected to be exponentially suppressed, due to the existence of screening masses [15, 16].

However, it was recently suggested [17] that nontrivial IR corrections affecting a gas of free
gluons may still be relevant for the strongly interacting plasma at temperaturesO(Tc). For a pe-
riodic box of volumeL3 and timelike size 1/T, these corrections depend logarithmically on the
aspect ratio of a timelike cross-sectionx := LT, and vanish forx→ ∞. In this contribution I study
numerically the impact of these effects at temperatures up to about 3Tc.

2. Finite-volume corrections to the partition function of the free gluon gas

In the continuum, the partition functionZ for a gas of free SU(N) gluons in a finite box of
spacelike sizesL×L×L at temperatureT was calculated exactly in ref. [17]:

lnZ

N2−1
=

π2

45
(LT)3− ln

√
LT +O(e−2π LT) . (2.1)

The leading finite-volume correction to lnZ is a logarithmic function ofLT. Neglecting terms
O(e−2π LT), the pressurep, energy densityε, and free energy densityf in a finite volume read:

p =
ε
3

=
π2

45
T4(N2−1)

[

1− 15
2π2(LT)3

]

, f = −π2

45
T4(N2−1)

[

1− 45
2π2(LT)3 ln(LT)

]

. (2.2)

Note thatp is no longer equal to− f , which is in contrast with the usual assumption underlying
the determination of the EoS on the lattice with the integral method [18]. The accuracy of these
corrections for theT → ∞ limit on the lattice is manifest when comparing them with, e.g., the
finite-volume corrections toε obtained by numerical integration in ref. [19]—see fig. 1 in ref. [17].

One may wonder whether these effects can also play a rôle for a gas of strongly interacting
gluons at finite temperature—in particular, at relatively low temperaturesO(Tc). As the logarith-
mic corrections appearing on the r.h.s. of eq. (2.1) stem from the regularization of the divergent
contribution to the functional integral coming from constant configurations, and periodic b.c. allow
the existence of constant configurations also in the interacting system, it may be that a nontrivial IR
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correction still affects the gluon gas at relatively low temperatures. In particular, in ref. [17] it was
pointed out that, for the typical parameters of present lattice simulations, this effect could account
for a large fraction of the deviations from the SB limit observed at temperatures of the order ofTc.

3. Numerical results

I run simulations of SU(N) gauge theories with the standard isotropic Wilson action, using an
algorithm that combines heat-bath updates [20] for SU(2) subgroups [21] and full-SU(N) overre-
laxation updates [22, 23]; part of the simulations atT = 0 were run using Chroma [24]. The lattice
extent in the timelike direction in lattice units wasNτ = 5 (and, in some cases, 6); the spacelike
volume in lattice units wasN3

s , with Ns up to 22, 18, 16 and 16 for SU(3), SU(4), SU(5) and
SU(6), respectively. TheT = 0 simulations were run onN4

s lattices.

For SU(3), I set the scale usingr0 [25], while for the other groups I used the string tension [26,
27]. I determined the EoS using the integral method [18], from measurementsof the average
plaquette at finely separatedβ values: in particular,n = 180 intervals of amplitude∆β = 0.005
were used for SU(3). The numerical integration was done with the method described by eq. (A.4)
in ref. [28], where it was used to measure the interface tension in the Isingmodel1; the errors of
this method areO(n−4). Cutoff effects on the asymptotic normalization of the EoS were corrected
using theRI (Nτ) factor [10, 31].

The IR corrections to the EoS can be calculated analytically only for the free-gluon gas; the
result obtained in this limit can be considered as an upper bound for possiblenontrivial IR effects
in the strongly interacting theory at temperatures of the order ofTc. To check if in this regime the
system is sensitive to logarithmic finite-volume corrections, I calculated the pressure from lattices
characterized by different values ofLT in two different ways. First, assuming that the data are not
affected by nontrivial IR effects. Second, assuming maximal sensitiveness, i.e., assuming the same
corrections as for the free-gluon gas.2 If the IR corrections affecting the gas of free gluons were
still relevant atT ≃ 2Tc or 3Tc, then the latter method should give better consistency among results
obtained from different lattices.

This, however, seems not to be the case: the left panel of fig. 1 shows that the discrepancies
between the results obtained using the first method are compatible with statistical fluctuations; this
still holds up toT ≃ 3Tc (central panel). On the contrary, the second method overcompensates
the differences between the two data sets, driving the curves away fromeach other (right panel).
Similar results also hold for SU(4).

Therefore, within the precision of our data, at temperatures up toT ≃ 3Tc we do not observe
evidence for the logarithmic IR corrections that affect the free-gluon gas. Yet, as these corrections
should eventually show up in the perturbative regime at high enough temperatures, it would be in-
teresting to study at whatT values they can be seen on the lattice. Since the logarithmic corrections
are nonnegligible only forLT = O(1), this problem could be studied by running lattice simulations

1See refs. [29, 30] and references therein for further details.
2Since the quantity that is measured on the lattice is− f , rather thanp, the latter method requires that the data be

shifted (to compensate forp+ f 6= 0) and rescaled (to account for the different high-temperature limit).

3



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
1
7
5

Geometric effects in lattice QCD thermodynamics Marco Panero

0 1 2 3 40

0.4

0.8

1.5 2 2.5 3

0.4

0.5

0.6

0.7

0.8

1.5 2 2.5 3

0.5

0.6

0.7

0.8

Figure 1: Left panel: The EoS for SU(3), evaluated neglecting possible logarithmic corrections to the
partition function, for lattices of size 203 × 5 (black crosses) and 183 × 5 (red circles). The plot shows
the results forp/T4 (normalized to the SB limit)vs. T/Tc. Central panel: High-temperature zoom of
the previous plot. Right panel: The EoS evaluated assuming maximum sensitiveness to IR effects (i.e.
compensating for the logarithmic effects that affect a free-gluon gas), according to eq. (2.2).
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Figure 2: The rescaled pressurep/T4 (normalized to the SB limit) from simulations on a 163×5 lattice,vs.
T/Tc, for SU(4) (left panel), SU(5) (central panel) and SU(6) (right panel).

at largeβ values and shrinking physical volume.3 Although such a limit has its own reasons of
theoretical interest [34, 35], in the present work I restricted my analysisto temperaturesO(Tc), and
to sufficiently large physical volumes.

Having found no evidence for logarithmic IR corrections in theT < 3Tc regime, I proceeded
to the evaluation of thermodynamic observables in SU(N). Figs. 2-5 show preliminary results for
equilibrium thermodynamics observables (pressure, trace of the stress tensor∆ = ε −3p, energy
density and entropy densitys), for 3≤ N ≤ 6, normalized to their SB limits. In agreement with the
conclusions of ref. [10], the results from various gauge groups areessentially compatible with each
other (with small quantitative corrections), and clearly different from theSB limit. Further results,
including data for SU(7) and SU(8), will be presented elsewhere [12].

3The SU(3) EoS at very high temperatures was studied in ref. [32], where the results shown in fig. 5 were obtained
from simulations withNτ = 8 andN3

s = 243 orN3
s = 323 [33]. The maximal IR correction would then shift the asymptotic

value down to about 97% of the SB limit, which indeed looks compatible with their result at the highest temperature
T = 3×107Tc (although the data are also compatible with the conventional SB limit). Note however, that this comparison
is only approximate, because in the numerical method of ref. [32] the geometric parameterx is not held fixed, and
furthermore the pressure at high temperatures is obtained using the integral method, starting from low temperatures.
This is based on thep = − f equality, which—as we have seen—is reliable in the low-T regime, but would also start
being affected by IR corrections whenT is increased.
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Figure 3: Left to right: ∆/T4, normalized toπ2

45(N2−1), vs. T/Tc, for SU(3), SU(4), SU(5) and SU(6).
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Figure 4: Left to right: The rescaled energy densityε/T4 (normalized to its SB limit)vs. T/Tc, for SU(3),
SU(4), SU(5) and SU(6).
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Figure 5: Same as in fig. 4, but for the rescaled entropy densitys/T3.

4. Summary and outlook

The nontrivial IR corrections affecting a gas of free gluons in a finite box were derived in
ref. [17], where it was also suggested that they may still play a rôle at temperatures of the same or-
der of magnitude asTc. To the level of precision achieved, my numerical results in a (phenomeno-
logically relevant) temperature range up to about 3Tc did not reveal any nontrivial finite-volume
effects. However, the latter might probably be observed in numerical simulations at very high tem-
peratures and small volumes [32]. Next I also measured bulk thermodynamicquantities in SU(N)

gauge theories with 3≤ N ≤ 6 colors, at temperatures up to 3Tc. In agreement with ref. [10], the
results for different SU(N) groups share similar features, and the strong deviations from the SB
limit observed in SU(3) survive the large-N limit. This leans support to the hypothesis that QCD
may admit a nearly conformal effective description at temperatures of a few timesTc, where the
theory is still strongly interacting [36].
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