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Figure 1: The peak value of._ grows slower thaiN3, hence standard finite size scaling arguments indicate
that this is not a first order phase transition.

1. Technical preliminaries

We report results from a simulation of two flavours of staggered quaitksmassm/T. =
0.1 (corresponding tan;/m, = 0.3) on lattices of sizes & 12%, 6 x 18% and 6x 24° [1]. The
simulations were performed using the R-algorithm. Most of trajectories welength 1 MD
time unit and used time steps of 0.01 units. In tests with time steps of 0.001 unitsyme tfeat
bulk quantities such as plaquettes, Polyakov loops and the quark catglemsained unchanged.
Increasing the trajectory length to 3 MD time units also made no changes to thasstigs.
However, the longer trajectories gave shorter autocorrelation times.

The finite temperature cross over coupling was monitored using the Polyedowsuscepti-
bility, x. and two operators which enter the quark number susceptibilities (QNS) yna®w).
and (Oa44)c. All these measures were compatible within the precision of our measurenveats.
found B = 5.4255). Previous results bracket this value: foyT, = 0.15 it was reported that
B. = 5.438(40) [2] and form/T, = 0.075 it was found thaB; was in the range .B1-543 [3]. We
found that 3-loop scaling worked reasonably well betwides: 4 and 6. Standard finite size scal-
ing analysis indicated that the transition is not of first order (see Figuiigdinctions between a
second order transition and a cross over requires larger spatial \@lume

At each temperature we generated at least 100 statistically independgetganfigurations,
and in the region neaf;, we around 200 such statistically independent configurations. For each
configuration we measured all the QNS upto the eighth order using a ndisyrieation with
500 random vectors. Twenty matrix inversions are required to do thisaftih eendom vector.
Nevertheless, the CPU time spent in these measurements were an ordenafideagmaller than
that spent in generating the configurations.
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Figure 2: The off-diagonal and diagonal quark number susceptig#itnN, x (4N, )2 lattices.

2. Quark number susceptibilties

The off-diagonal QNSx11 is shown in Figure 2. There is no evidence of lattice spacing
effects, nor of a crossover &. The diagonal QNS is also shown in the same figure, and shows
finite lattice spacing effects. There is a rapid crossover fgaiThis is due to the operat@,
which appears in the diagonal QNS but not in the off-diagonal.

Hence the fourth order QNS which contai@s; should peak. This is exactly what we see.
Also, the operato®,, which is another contribution to the fourth order QNS do not peak, lmw sh
a cross over. These two kinds of behaviour are also exhibited in Figure 2

By an extension of this argument, the eighth order QNS which cof@@ainshopuld peak,
and the peak is shown in Figure 2. The oper&@gmwhich is one of the contributions to the sixth
order QNS, however, does not show a simple crossover, but exhitstesting structure beloil,
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Figure 3: The series coefficients in the Taylor expansiorxgf(normalized by appropriate powers bfto
make them dimensionless) on lattice sizds= 4 for N; = 6 (first panel) and\N; = 4 (second panel). Note
that there is a small window of temperature, a little belwin which all the measured series coefficients
are positive.

as also shown in Figure 2. The same is true of the opefagpwhich is not shown. Hence the
susceptibilities of these operators need not pedk athese patterns were noticed earlier in studies
with N; = 4 lattices [4].

Figure 2 also shows that the peaks@f, and O44 occur at the same value @f where the
peak of x, occurs (which was used to set the temperature scale used here). Wiémdbhese
three measurements we find the same cross over coupling, at least withiretti@gm of our
measurements.

These figures also show that measurements of the most important matrix elermiehtson-
tribute to the QNS up to the eighth order are under control when 500 ramdotors are used for
the measurements.

Finally, in Figure 3 we collect together the series coefficients in the Tayjoaresion ofig.
For bothN; = 6 and 4, we find that there is a small window of temperatures where all thaireeas
series coefficients are positive. Also note that at high temperatures @nfirghtwo coefficients
are appreciable.

3. The critical end point

Identifying a critical point through finite lattice computations is hard even vdigtt simula-
tions can be performed, and there is a well-known theory of critical phena. In our case direct
simulations are impossible and series expansions have to be resorted to.

The radius of convergence of the series is the point at which it breaks:dhe critical point
must be located at one such point of break down. Since the series itioguiesn powers ofu3,

a QCD critical point occurs only when the series breaks down at a posiive ofu3, implying
that all coefficients must be positive. We find that at the lowest tempesatitrieh we study, the
series coefficients are not all positive. Also at high temperatures tHigcte®s change sign. As a
result, there is only a small window of temperatures where the critical end qganiriie.

Of course, any numerical method will study only a finite number of terms andftire can
give only a finite number of estimators of the radius of convergence. Wetfatdamong the tem-
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Figure 4: The radius of convergence at three neighbouring temp&starour scan. A critical point can
only be deduced from the first. The filled symbols indicateg$iimator of the radius of convergence which
is (x(@/x(M)¥/ Open symbols stand for a different estimator, whick/ig("-2/x("+1, Herex(" is the
n-th coefficient in the Taylor expansion gg.
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Figure 5: The volume dependence of estimators of the radius of coewesgatTE. The behaviour is
consistent with expectations at a critical point. The oped filled symbols have the same meaning as in

Figure 4.

peratures we studied, there is only one where the successive estimatetatistically consistent
with each other 4. At this temperature the same value for the radius of gemezr is also obtained
with two different estimators. Therefore we identify this temperature Wkh Of course, it is
possible that at some other temperature the estimate of the radius of comeergey stabilizes
after several more terms. Further work is needed to rule out such pgit®lo
If our identification of the critical end point has any merit, then we shouldlesta check for
finite volume effects. Since there is no true criticality at finite spatial $izese would expect that
at TE, estimates of the radius of convergence would seem to stabilize, but atcsiiced order
of the expansionp, (L), it would suddenly begin to increase with the order of the expansion. Of
coursen, (L) should increase with, going to infinity asL goes to infinity, so that a stable value
of the radius of convergence is obtained in the thermodynamic limit. We showumeFigthat this
behaviour is seen at the point we identify&s.
Our estimate of the critical end point with lattice cutoff @f= 1/(6TE), a finite lattice of
spatial size. = 4/TE, when the quark mass is tuned to ging = 230 MeV, is

TE/T. =0.94+0.01

and

ug/TE =1.840.1

(3.1)

In an earlier computation with= 1/(4TE), where the lattice size and quark mass were kept at this
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Figure 6: Series expansions to different orders fail to agree; nohdg indicate the presence of the critical
point. Padé approximants constructed using the same deeffcdo much better at predicting physical
guantities. Both figures conceyg at T — 0.94T,.

value [5], we had found the sariié& /T, but obtainequ§ /TE = 1.34-0.3. We had also used larger
volumes in that study and on extrapolating- « we found thatuf /TE ~ 1.1. If the same pattern
recurs at the smaller cutoff, then the result quoted here would providpyzer bound o /TE.

4. Series expansions and Padé approximants

A finite series expansion is a bad way to extrapolate results to figitespecially when the
series shows signs of breaking down. One needs instead a methodimiwesy the series. A
well-known method for doing this is to use Padé approximants [6].

The breakdown of the series expansion can be illustrated well enouglkibyg the expansion
atT = 0.94T.. The sum of the first two terms in the series is a quadratigiand hence increases
monotonically. The sum of the first three terms is a quartic and increasedaster. There is no
sign of a breakdown a1f (Figure 6, and a comparison of the two expansions shows that the series
are only reliable fopg/T < 1.

On the other hand, one could construct Padé approximants out of thesearmecoefficients.
The two corresponding Padé approximants are shown in Figure 6. Ehgo®d agreement be-
tween the two approximants right upto the singular point. Error propagatitmes® computations
require care, and are dealt with in detail in [1].

An interesting point about this concerns the spurious peak mt T = T.. x(? has no peak at
T but x® has [7]. The truncated serigs = x? + x ¥ u3 /2 will therefore have a peak &, with
the peak growing infinitely high ggg — . This is spurious. A Padé resummed extrapolation will
shift the peak correctly to the critical end point.

5. Conclusions

A computation with two flavours of staggered quarks with the quark mass targgde m; =
230 MeV, with a cutoff Ya = 6T on lattice sized T = 2, 3 and 4 was used to obtain series
coefficients for a Taylor expansion gg to sixth order (eighth order fd?) and yielded the estimate
of the location of the critical end point given in eq. (3.1). The seriesmsipa coefficients can be
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used to resum the series into Padé approximants and obtain stable predicti@rous quantities
at finite chemical potential.

The computations reported here were performed on the Cray X1 of thenlhdttice Gauge
Theory Initiative.
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