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In this lecture we discuss various properties of the phase factor of the fermion determinant for
QCD at nonzero chemical potential. Its effect on physical observables is elucidated by compar-
ing the phase diagram of QCD and phase quenched QCD and by illustrating the failure of the
Banks-Casher formula with the example of one-dimensional QCD. The average phase factor and
the distribution of the phase are calculated to one-loop order in chiral perturbation theory. In
quantitative agreement with lattice QCD results, we find that the distribution is Gaussian with a
width ∼ µT

√
V (for mπ � T � ΛQCD). Finally, we introduce, so-called teflon plated observables

which can be calculated accurately by Monte Carlo even though the sign problem is severe.
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Phase of Fermion Determinant

1. Introduction

Although the Euclidean formulation of QCD has been extremely successful in the evaluation
of observables from first principles, at nonzero chemical potential, because of the phase of the
fermion determinant, progress has been slow and limited to a small part of the QCD phase dia-
gram (see for example [1] for a recent review). Motivated by the drastic effect of the phase of
fermion determinant on physical observables, we study its properties to one-loop order in chiral
perturbation theory. Since the average phase factor is a ratio of two partition functions it has to
vanish exponentially with the volume when evaluated with respect to a positive definite measure.
Therefore, a sensible strategy is to extract observables by extrapolation from small volumes. In
the domain of validity of chiral perturbation theory it possible to derive the volume dependence of
the average phase factor, and to determine the parameter range where reweighting methods [2, 3]
work. The distribution of the phase, which is also calculated, might be relevant in applications of
the density of states method [4, 5, 6]. It is less clear how methods that rely on analytical contin-
uation in the chemical potential [7, 8, 9, 10] or methods that are based on the canonical partition
function [11, 12] are affected by the sign problem, but each method has its own difficulties.

With regards to the volume dependence of the QCD partition function at µ 6= 0, this can be
investigated in detail in the microscopic domain of QCD [13, 14] where QCD is equivalent to chiral
random matrix theory. In this domain, the cancellations that give rise to the discontinuity [15] of
the mass dependence of the chiral condensate also take place for finite size matrices [16].

After the definition of the average phase factor in section 2, we discuss its effects on the
phase diagram and on the chiral condensate in 1d QCD in Section 3. Results obtained with chiral
perturbation theory including the distribution of the phase are given in sections 4 and 5.

2. Average Phase Factor

At nonzero chemical potential, µ , the QCD Dirac operator is given by D+ µγ0 +m, where D
is the anti-hermitian Dirac operator at zero chemical potential, and m is the quark mass. Because

���
� ���������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������

�������������������������

�������������������������

quark mass m

∆(µ)

Fig. 1. Quenched Dirac eigenvalues on a 43 ×8 lattice [17] (left)
and a schematic Dirac spectrum (right).

µγ0 is hermitian, this Dirac operator does not
have any hermiticity properties and its eigen-
values are scattered in the complex plane (See
Fig. 1). Although the Dirac eigenvalues are
still paired, the determinant is complex
det(D+ µγ0 +m) = eiθ |det(D+ µγ0 +m)|.
The phase will be strongly fluctuating if the
quark mass is inside the domain of eigenval-
ues resulting in an average phase factor that
vanishes in the thermodynamic limit.

The average can be evaluated with respect to different partition functions. A particularly useful
definition of the average is with respect to the phase quenched partition function,

〈e2iθ 〉 =
〈(det(D+ µγ0 +m))2〉
〈|det(D+ µγ0 +m)|2〉 =

ZQCD
N f =2

Z|QCD|
N f =2

, (2.1)
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Phase of Fermion Determinant

which is the ratio of the QCD partition function and the phase quenched QCD partition function.
Because free energies are extensive and the free energy of QCD and phase quenched QCD is
generally different, the average phase factor vanishes exponentially with the volume. This explains
the severity of the sign problem.

In addition to the sign problem, there is an overlap problem. For any given field configuration,
the chiral condensate is close to the result for the quenched or phase quenched partition function.
The true value of the condensate is due to exceptional gauge field configurations. The deep reason
for this is that determinants and the average phase factor depend exponentially on the volume.

3. The effect of the phase factor

The simplest way to analyze the effect of the phase factor is to compare the phase diagram
of QCD and phase quenched QCD (denoted by |QCD|). First principle calculations for QCD have
only been done at or near the temperature axis of the phase diagram in the µT -plane. At zero
temperature, a transition to a phase with nonzero baryon density takes place at µ ≈ mN/3. Experi-
mentally [18], it has been shown that this transition is first order with the first order line ending in
a critical endpoint (see Fig. 2). The remainder of the phase diagram is based on general arguments
and model studies. At extremely high densities, one expects a superconducting phase whereas at in-
termediate densities a confined phase with restored chiral symmetry is a likely possibility [19, 20].
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Fig. 2. The phase diagram of QCD in the temperature baryon chemical potential plane (left) and in the temperature isospin chemical

potential plane (right). The data points in the right figure are from lattice QCD simulations [21].

On inspection of the lattice Dirac spectra at nonzero chemical potential (see Fig. 1) we notice
that the eigenvalues are distributed more or less homogeneously inside a strip and that the strip
has a sharp edge. This implies that we can expect a phase transition when the quark mass hits the
edge of this strip located at ∆(µ). The critical chemical potential is therefore given by ∆(µc) = m
[22, 23]. Because phase quenched QCD is QCD at nonzero isospin chemical potential, we know
that at low temperatures a phase transition to a pion condensed phase occurs at µ = mπ/2. Using
the Gell-Mann-Oakes-Renner relation this results in a half-width of the strip of ∆(µ) = 2µ 2F2/Σ.

The width Dirac spectrum for each gauge field configuration in full QCD is also given by
2∆(µ), but instead of a phase transition at µ = mπ/2 there is a phase transition at µ = mN/3.
In particular, this implies that the chiral condensate should be a smooth function of the chemical
potential in the region with zero baryon density, and in the low temperature limit, it should not
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Phase of Fermion Determinant

depend at all on the chemical potential. How this can happen in spite of the fact that the Dirac
spectrum is µ-dependent has been understood in detail for the microscopic domain of QCD [15,
16]. Here we will illustrate this phenomenon for QCD in one-dimension [24].

3.1 Effect of the Phase in 1d QCD

The Banks-Casher relation [25] states that

Σ = lim
m→0

lim
V→∞

πρ(m)

V
, (3.1)

where ρ(λ ) is the density of Dirac eigenvalues on the imaginary axis and V is the volume of space-
time. Although originally intended for an anti-Hermitian Dirac operator, this relation correctly
gives a vanishing chiral condensate for phase quenched QCD at µ 6= 0 since there is no accumula-
tion of eigenvalues on the imaginary axis. However, for full QCD at µ 6= 0, the chiral condensate
has a discontinuity when the quark mass crosses the imaginary axis, but it does so without an accu-
mulation of eigenvalues on the imaginary axis. The alternative mechanism that is at work was first
discovered in random matrix theory [15, 16]. Below we will illustrate this mechanism for QCD in
one dimension which can also be viewed as a random matrix model.
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Fig. 3. Schematic plot of eigenvalues of the Dirac operator for lattice QCD in one dimension (left). The yellow dots denote the
position of the eigenvalues for a single gauge field configuration, whereas the green ellipse shows the support of the spectrum in the
thermodynamic limit. The chiral condensate for one flavor versus the quark mass is shown in the right figure.

The partition function of lattice QCD in one dimension is given by

Z =
∫

U∈U(Nc)
dU detD, (3.2)

where the integral is over the Haar-measure of U(Nc). The 1d lattice Dirac operator is the N ×Nc

matrix with hopping matrix elements given by U exp(µ) and its inverse [26] (the number of lattice
points is denoted by N). The chiral condensate for one flavor is given by

Σ(m) =

〈

1
N ∑k

1
λk+m∏k(λk +m)

〉

〈∏k(λk +m)〉 . (3.3)

Since the eigenvalues, λk, are located on an ellipse in the complex plane (see Fig. 3) the determinant
has a complex phase. For U(1) the chiral condensate can be evaluated analytically [24] with the
result that is shown in the right figure of Fig. 3. The amazing phenomenon, also known as the
“Silver Blaze Problem” [27], is that the chiral condensate is continuous when m crosses the ellipse
of eigenvalues, but shows a discontinuity at m = 0, where there are no eigenvalues. This can happen
because the chiral condensate is determined by exponentially large (in the number of lattice points)
contributions which cancel to give a finite result for N → ∞.
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4. Average Phase Factor in Chiral Perturbation Theory

Because the average phase factor is the ratio of the QCD partition function and the phase
quenched QCD partition function, it can be evaluated by means of chiral perturbation theory. The
low-temperature limit of QCD is given by a gas of pions and does not depend on µ to one-loop
order. Since the phase quenched partition function is QCD at non zero isospin chemical potential
the pions are charged with respect to µ resulting in a µ-dependent one-loop result. For N f = 2 there
are two charged Goldstone modes π±. De-
noting their one-loop contribution by

∏
p

1
√

m2
π +~p2 +(p0 −2iµ)2

≡ eG0(µ)/2, (4.1)

we obtain (the product is over all pions)

〈det2(D+m+ µγ0)〉 ∼ e−VF(0) ∏
k

eG0(µ=0)/2,

〈|det(D+m+ µγ0)|2〉 ∼ e−VF(0) ∏
k

eG0(µ)/2.

The average phase factor is the ratio of
the two partition functions cf. (2.1) result-
ing in the cancellation of the neutral Gold-
stone bosons so that

〈e2iθ 〉pq = eG0(µ=0)−G0(µ). (4.2)
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Fig. 4. Average phase factor in lattice QCD obtained
from [7] (red curve) compared to one loop chiral per-
turbation theory in a box equal to the size of the lattice
(dashed curve) .

In Fig. 4 where we compare one loop results for the average phase factor to lattice QCD results
obtained by Taylor expansion in the chemical potential (there are no fitting parameters). The agree-
ment is striking even for T/Tc = 0.90. As expected chiral perturbation theory fails above Tc.

5. Probability Distribution of the Phase

The density of the phase angle is defined by ρ(φ) = 〈δ (φ − Imlogdet(D + m + µγ0))〉N f .
Notice that φ ∈ 〈−∞,∞〉. If the average is over dynamical quarks, the phase density factorizes into
an overall phase factor and the phase density of the phase quenched partition function (ρpq(φ)),

〈δ (φ −θ)eiN f θ |detN f (D+m+ µγ0)|〉 = eiN f φ 〈δ (φ −θ)|detN f (D+m+ µγ0)|〉. (5.1)

According to the Central Limit Theorem we expect that ρpq(φ) approaches a Gaussian distribution
[28]. Notice however that observables are determined by correlations with the phase of the fermion
determinant, and knowing the Gaussian distribution is only part of the story.

The phase density can be evaluated using the replica trick and chiral perturbation theory [29].
Fourier transforming the δ -function we obtain

ρN f (φ) = 〈δ (φ − Imlogdet(D+m+ µγ0))〉N f = 〈∑
n

ein(φ−Imlogdet(D+m+µγ0)〉N f (5.2)

The phase density therefore follows from the moments of the phase factor,

〈e2inθ 〉N f =
1

ZN f

〈

detn+N f (D+m+ µγ0)

detn(D† +m+ µγ0)

〉

, (5.3)
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which is the ratio of two partition functions with a numerator that contains both bosonic and
fermionic Goldstone particles. All 2n(n + N f ) charged Goldstone particles are fermions while
the uncharged Goldstone particles are bosons. We thus find

〈e2inθ 〉N f = en(n+N f )[G0(µ=0)−G0(µ)]. (5.4)

By Poisson resummation we obtain (∆G = G0(µ)−G0(µ = 0))

ρ(φ) = ∑
n

einφ e−n/2(n/2+N f )∆G =
e

1
4 N2

f ∆G

√
π∆G

eiN f φ− φ2
∆G . (5.5)

A simple expression for the width of the Gaussian is
obtained in a small µ expansion of the ChPT result.
For the extensive quantity ∆G we find (mπ � T )

∆G ∼V µ2T 2. (5.6)

Since the width of the Gaussian ∼
√

∆G this result
is in quantitative agreement with the lattice results
by Ejiri [28] (See Fig. 5).

-20 -10 0 10 20
θ=(Nf/4)Im[ln(det M)]

0

100

200

300

400
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Fig. 5. Phase density in lattice QCD [28].
The average phase factor can also be evaluated in a weak coupling expansion valid at high temper-
atures [30, 31]. The small-µ limit of the first nonvanishing contribution is given by [29]

FQCD(µ ,T )−F|QCD|(µ ,T ) ∼V α2
s µ2T 2, (5.7)

with V the space-time volume. This implies that the sign problem remains severe in the thermody-
namic limit of the weak coupling result. Notice that expectation values can be calculated accurately
despite the sign problem if the correlations between the observable and the phase factor are small.
Such teflon plated observables should obey the condition (here N f = 2)

|〈Oe2iθ 〉|QCD|−〈O〉|QCD|〈e2iθ 〉|QCD||
〈O〉|QCD|〈e2iθ 〉|QCD|

� 1 (5.8)

This condition only makes sense if 〈O〉|QCD| 6= 0 as can be seen by rewriting the l.h.s. as

|〈O〉QCD −〈O〉|QCD||
〈O〉|QCD|

. (5.9)

For example, when O is the baryon density this ratio is O(α 2
s ) whereas 〈O〉QCD is O(α0

s ) [32].

6. Conclusions

The phase factor of the fermion determinant completely alters the properties and the physics
of the QCD partition function at nonzero chemical potential. We have illustrated this by the rela-
tion between the chiral condensate and the Dirac spectrum and the difference between the phase
diagram of QCD and phase quenched QCD. Using one-loop chiral perturbation theory, we have de-
termined both the magnitude of the average phase factor and the statistical distribution of the phase
which turns out be a Gaussian with width ∼ µT

√
V . Finally, we introduced a class of observables

(teflon plated observables) that can be evaluated accurately despite the sign problem. An example
of such observable is the baryon density at high temperature and small chemical potential.
Acknowledgments: This work was supported in part by U.S. DOE Grant No. DE-FAG-88ER40388.
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