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A method to measure the transport coefficients on the lattice is proposed. We introduce a spatially-
inhomogeneous momentum source to the Hamiltonian in order to generate a non-equilibrium
but steady hydrodynamic flow. Once such hydrodynamic flow is created with appropriate spa-
tial geometries, the transport coefficients are determined from expectation values of the energy-
momentum tensor. A Monte Carlo simulation for SU(3) gauge theory is performed to measure
the shear viscosity with this method. The effect of the momentum source is taken into account
with the Taylor expansion up to the third order. Our numerical result shows, however, that the
hydrodynamic flow is not generated up to this order in this formalism.
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Figure 1: Experimental setting to measure the shear viscosity.

1. Introduction

The experimental results at Relativistic Heavy Ion Collider (RHIC) indicate that the time evo-
lution of the quark-gluon plasma (QGP) near the critical temperature for deconfinement, Tc, is
well described by the perfect hydrodynamic equation without viscosities [1]. In the framework of
AdS/CFT correspondence, it is suggested that the matter described by the supersymmetric Yang-
Mills theroy at strong coupling has a shear viscosity to entropy ratio η/s = 1/4π [2]. This value
is now conjectured as the universal lower bound for η/s. After these experimental and theoretical
developments, the investigation of transport properties of the QGP near Tc is one of the most hot
topics in these communities.

Lattice QCD Monte Carlo simulation provides a method to analyze properties of the QGP
phase in the non-perturbative region directly from the first principle of QCD. There have been done
several attempts to measure transport coefficients with numerical simulations on the lattice [3].
These analyses evaluate transport coefficients using the Kubo formulae, which relate transport co-
efficients to the low-energy behavior of the spectral functions for the energy-momentum tensor. In
this method, one must determine the spectral function, which is a real time quantity, from the dis-
cretized lattice correlator in the Euclidean space. The reconstruction of the spectral function from
the lattice correlator, however, is an ill-posed problem. Although there are considerable attempts
to overcome this difficulty, lattice data used so far seem not fine enough for this reconstruction [4].
Moreover, it is non-trivial whether the spatial volume of lattices analyzed thus far is large enough
to argue the hydrodynamics, which is a notion valid at long range.

In this paper, we propose a different strategy to evaluate the transport coefficients on the lattice.
This idea is inspired by experimental methods to measure transport coefficients. While this idea
can deal with various transport phenomena, in the following we limit our attention to the shear
viscosity. An experimental setting to measure the shear viscosity is shown in Fig. 1: The target
fluid is surrounded by two parallel boards with a distance L, and the upper board is moving with a
velocity v. The lower board then feels a shear stress t from the fluid. By measuring this stress, the
shear viscosity η of the fluid is determined to be η = tL/v.

In our strategy, we first attempt to generate a spatially-inhomogeneous system having a hydro-
dynamic flow on the lattice with a velocity profile similar to this experiment. Once such flow is
created, the shear viscosity can be determined as the experiment with direct measurements of the
velocity and shear stress on the lattice. Here, we remark that the system that we are considering
now is not in equilibrium, but a steady state. The steady system can be treated in the imaginary
time formalism, and thus this numerical simulation can be carried out on the lattice in principle.

The hydrodynamic flow on the lattice may be realized by adding a spatially-inhomogeneous
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momentum source to the Hamiltonian H,

H → Hλ = H−λTsource, (1.1)

where λ is a Lagrange multiplier. The source term Tsource is given by a sum of the local momentum
operators Pi(~x) = T 0i(~x), with T µν(~x) being the energy-momentum tensor. In this study, we take
the effect of Tsource into account by the Taylor expansion with respect to λ . This expansion may be
justified since an infinitely slow hydrodynamic mode is sufficient for our purpose.

In the following discussion, we consider the pure gauge theory for simplicity. We use the
natural units h̄ = c = 1.

2. Hydrodynamic equation and shear viscosity

In order to make the outline of our strategy clear, let us first solve the hydrodynamic equation
with a boundary condition corresponding to Fig. 1. The dissipative hydrodynamic equation is
written by [5],

∂νT µν = 0, (2.1)

where each component of the energy-momentum tensor is given by the macroscopic quantities as

T µν = −pgµν +(ε + p)uµuν +∆T µν , (2.2)

∆T µν = η(∆µuν +∆νuµ)+
(

2
3

η−ζ
)

Hµν∂ρuρ , (2.3)

where ε and p are energy density and pressure, uµ denotes the velocity field, η and ζ represent
shear and bulk viscosities, respectively, ∆µ = ∂ µ −uµuν∂ ν , and Hµν = uµuν −gµν . To reproduce
the experimental geometry, now we consider a static system having a translational invariance along
2 and 3 directions. Furthermore, we assume that uµ has only one non-vanishing spatial component,
i.e.,

uµ(x1) = (1,0,0,u3(x1)), (2.4)

and that the amplitude is small, |u3(x1)| ¿ 1. With this ansatz, all components in the l.h.s. of
Eq. (2.1) trivially vanish except for

∂1T 31 = η∂1∂ 1u3 = 0. (2.5)

Eq. (2.5) shows that u3(x1) is linear as a function of x1; by determining the velocities at two bound-
aries, u3(x1) between them is just a straight line connecting these values. Substituting this solution
to Eq. (2.2), we obtain

T 31 = η∂ 1u3, T 03 = (ε + p)u3. (2.6)

These solutions lead to the formula for η given by the momentum T 03 and shear stress T 31 as

η = (ε + p)
T 31

∂ 1T 03 = (T 00 +T 11)
T 31

∂ 1T 03 , (2.7)

where we have neglected u3(x1) dependences of ε and p, which are higher order effects. We note
that Eq. (2.5) also shows that T 31 and ∂ 1T 03 take constant values in this system. Using Eq. (2.7),
we can determine the shear viscosity on the lattice by measuring the expectation values of T µν(~x)
under the presence of the hydrodynamic flow.
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3. Momentum source

The energy-momentum tensor in the pure gauge theory is written by the microscopic degrees
of freedom as

T µν = 2tr
[

Fµ
ρ Fρν +

1
4

gµνFρσ Fρσ

]
, (3.1)

where Fµν is the field strength. In the quantum statistical mechanics, the expectation value of
Eq. (3.1) is given by 〈T µν(~x)〉 = Tr[T µν(~x)e−H/T ]/Z, where H is the hamiltonian for the gauge
field. The expectation values in the system having the hydrodynamic flow may be calculated by
adding a source term λTsource to the Hamiltonian as in Eq. (1.1), which leads to

〈T µν(~x)〉λ =
1

Zλ
Tr

[
T µν(~x)e−(H−λTsource)/T

]
, (3.2)

where Zλ = Tr[e−(H−λTsource)/T ]. We put the subscript λ to the l.h.s. of Eq. (3.2), to emphasize that
the expectation value is taken with the source. To realize the velocity profile satisfying Eq. (2.4) on
the lattice with a finite volume with a periodic boundary condition, we put momentum sources on
two planes at x1 = 0 and Lx/2 pointing different directions, i.e.,

Tsource = T (0)−T (Lx/2), (3.3)

T (r) =
∫

dx2dx3T 03(r,x2,x3), (3.4)

with Lx representing the length of the lattice along x1 direction.
We note that T µν written by the microscopic degrees of freedom, Eq. (3.1), and those written

by hydrodynamic quantities, Eq. (2.2), represent the same physical quantity, while the latter is the
coarse grainined version of the former. Statistical mechanics tells us that the expectation values
of Eq. (3.1) after the coarse graining follow the hydrodynamic equation Eq. (2.1) at sufficiently
long scale. In order to discuss the dissipative phenomena in our strategy, we must first check that
such hydrodynamic flow is created on the lattice; in other words, we must confirm that 〈T 03(x1)〉λ
behaves linearly as a function of x1 at distance sufficiently far from the sources. Equation (2.7)
is then applied to such a region. The hydrodynamic behavior, on the other hand, can be violated
at short range. Such behavior of 〈T 03(x1)〉λ may be observed near the sources. Measurements of
such deviations would in turn make it possible to estimate the length scale where the hydrodynamic
picture is valid.

4. Taylor expansion

To calculate Eq. (3.2) for the momentum operator on the lattice, we write it in the path-integral
formalism,

〈T 0i(x)〉λ = − 1
Zλ

∫
DAµ iT E

0i (x)exp
[−SE − iλ

(
T E(0)−T E(Lx/2)

)
+λ 2 (· · ·)] , (4.1)

where SE is the Euclidean action, T E
µν(x) is the energy-momentum tensor in the Euclidean space,

with x denoting the Euclidean four vector, and

T E(r) = T
∫ 1/T

0
dτ

∫
dx2dx3T E

03(x)|x1=r. (4.2)
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Nx×N2
yz×Nt Lx[fm] Nconf.

64×322×6 3.13 23,000
128×322×6 6.27 24,000
192×322×6 9.41 13,000

Table 1: Simulation parameters.

The imaginary time x4 = τ is introduced in this procedure, while T µν(~x) in Eq. (3.2) is time-
independent; they are related as T E

4i = iT 0i. There appears terms proportional to λ 2 in the argument
of the exponential in Eq. (4.1), which however we abbreviated to save space.

In this study, we incorporate the effect of the source by the Taylor expansion,

〈T µν(x)〉λ = T µν
(0) (x)+λT µν

(1) (x)+
λ 2

2!
T µν
(2) (x)+

λ 3

3!
T µν
(3) (x)+ · · · . (4.3)

The coefficients of the zeroth and first order terms for 〈T 03(x)〉λ are calculated to be, respectively,

T 0i
(0)(x) = − 1

Z

∫
DAµ iT E

0i (x)exp
[−SE]

= i〈T E
0i (x)〉0, (4.4)

T 0i
(1)(x) =

1
Z

∫
DAµ iT E

03(x)Tsource exp
[−SE]

=−〈T E
03(x)T

E(0)〉0 + 〈T E
03(x)T

E(Lx/2)〉0), (4.5)

where 〈· · ·〉0 denotes the expectation value with λ = 0. Higher order coefficients than the first order
include multi-point correlation functions with λ = 0.

Now let us consider 〈T 03(~x)〉λ . First, we notice that the two-point spatial correlator, C(x) ≡
〈T E

03(x)T
E(0)〉0, approaches a constant at long distance, corresponding to the massless mode. In the

first order term Eq. (4.5), this constant cancels between the two correlators and does not contribute
to the long range behavior. The other part in C(x) vanishes at long distance. Thus, T 03

(1)(x) = C(x)−
C(Lx/2− x) cannot reproduce the linear behavior required by the hydrodynamic equation at Lx →
∞, and this order is never responsible for the hydrodynamic behavior at long range. Furthermore,
the even order terms in Eq. (4.3) should vanish since 〈T 03(~x)〉λ is an odd function of λ .

From these arguments, we understand that we need at least the third order term to argue the
hydrodynamic mode in the Taylor expansion. The thrid order term T 03

(3)(~x) includes, for example,
the four-point correlator

〈T E(0)2T E
03(x)T

E(Lx/2)〉0. (4.6)

Since this term could contain the length scale Lx/2 as a function of x1, it possibly reproduces the
linear function required by the hydrodynamics, indeed.

5. Numerical results

To calculate the shear viscosity numerically, we have performed a Monte Carlo simulation for
the SU(3) Yang-Mills theory. We take β = 6.499 corresponding to the lattice spacing a = 0.049fm
[6]. The simulation is performed for three different volumes Nx×N2

yz×Nτ with a periodic boundary
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Figure 2: First and Third order coefficients of Taylor expansion for 〈T 03〉λ on the lattice of size 128×322×
6. The sources are at Nx = 0 and 64.

condition. The parameters and numbers of configurations are summarized in Table. 1. In order to
see the long range behavior, we took one of the spatial direction, Nx, large. All lattices have the
same temporal length Nτ = 6, which corresponds to T ' 2.5Tc. We generated gauge configurations
with the heatbath and overrelaxation algorithms; each configuration is separated by 20− 60 steps
of one heatbath and four overrelaxation updates. These calculations are carried out on 128-node
partition at bluegene@KEK. For the momentum operator T E

0i (x) on the lattice, we have chosen the
definition Eq. (3.1) with the clover operator for the field strength.

In the upper panel of Fig. 2, we show the behavior of one of the correlator in Eq. (4.5), C(x1),
on the lattice with Nx = 128. The horizontal axis represents x1 in the lattice unit. The figure
shows that C(x1) takes nonzero values only near the source at the origin, and damps quickly as x1

becomes large. In particular, this function is zero within the statistical error for x1 & 8a ' 0.4fm.
As discussed before, this term should be a constant in the range where the hydrodynamics is valid.
The sudden damp of this term thus does not contradict the validity of hydrodynamic equation at
the length scale of order 1fm, as suggested by the success of hydorodynamic models at RHIC.

The lower panel of Fig. 2 shows the third order coefficient T 03
(3)(x

1). One sees that T 03
(3)(x

1)
is again zero within the statistical error except in the vicinity of the sources at x1/a = 0 and 64.
This result shows that the momentum flow does not manifest itself at all even at the third order of
Taylor expansion. Without the hydrodynamic flow, we cannot extract the shear viscosity through
Eq. (2.7). Finally, we note that the short range behavior of the momentum flow near the sources
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is governed by the microscopic dynamics, and we cannot conclude anything about the transport
properties from this feature.

6. Summary

With a steady hydrodynamic flow satisfying Eq. (2.4), the shear viscosity is related to the
energy-momentum tensor through Eq. (2.7). We have proposed to measure the shear viscosity us-
ing Eq. (2.7), by creating a steady hydrodynamic flow on the lattice with the momentum source
Eq. (3.3). A numerical simulation has been performed. The effect of the source has been incor-
porated by the Taylor expansion up to the third order. The numerical result shows, however, that
the momentum flow damps quickly near the source, and that the hydrodynamic flow at long range
cannot be described by the present formalism. Since we did not observe the hydrodynamic mode
on the lattice, the transport coefficients were not able to be measured up to the third order.

To realize the measurement of the shear viscosity using Eq. (2.7), we must first understand the
reason why any hydrodynamic modes are not observed in the present analysis. A possibility is just
a lack of the statistics. Increasing the number of configurations would clarify this point. It is also
possible that the finite order terms in the Taylor expansion can never describe the hydrodynamic
flow. If this is the case, Monte Carlo simulations without the Taylor expansion are required. These
analyses will be performed elsewhere.
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