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1. Introduction

Strongly interacting matter undergoes a deconfining transition at some teorpesdnich is
triggered by large increase in the number of degrees of freedom assveikelting of hadronic
states. Another important feature of the deconfined phase is the sgea#rinlor charges. It
has been argued that color screening will lead to quarkonium dissocidiawe dhe deconfine-
ment temperature which can be used as a signature of quark gluon plasmaéido in heavy ion
collisions [1]. Melting of quarkonium states has been studied in potential isedth screened
potentials (see e.g[][2] and references therein). Alternatively, onetmyay reconstruct quarko-
nium spectral functions from Euclidean correlators (see f.4] [3,dltefierences therein). It turns
out, however, that quarkonium melting does not affect the Euclideanmwscelators and these
correlators are almost temperature independent. This is contrary to apyaeis in the light quark
sector, where both meson correlators and spectral functions shoificsightemperature depen-
dence in the deconfined phagk [5]. Therefore potential models &ie tog#s to study in-medium
quarkonium properties. But to establish their applicability a better undelisaf color screening
is needed.

On the lattice color screening is usually studied in terms of the Polyakov looglatar related
to the free energy of static quark anti-quark pfjr [6]. This correlatowstsignificant temperature
dependence across the transition and in the deconfined phase thedrge ef static quark anti-
quark pair shows large temperature dependence even for very spethsens between the static
quark and anti-quark, much smaller than the inverse temperature. Inhadiverpicture this can
be understood due to the fact that in the deconfined phase not onlyt sjoglé anti-quark(Qd)
states contribute to the free energy but also colored statesQ@tm the adjoint representation.
This observation is also supported by lattice calculations of the correlatictidn of two temporal
Wilson lines in Coulomb gauge, which in perturbation theory correspond®tsditalled singlet
free energy[[9]. The singlet free energy is temperature indeperdestiort distances and coin-
cides with the zero temperature potential as expected. At large distaoeesydr, it also shows
significant temperature dependence.

The problem of defining color singlet and adjo® states on the lattice has been considered
in Ref. [[7]. It has been found that the conventional definition of singtet adjoint states have
problems. Here we report on our study [8] of static meson correlatorsdiménsionalSU(2)
gauge theory at finite temperature and show how the problem observed. ifijRcan be resolved
in the limit of small distances and/or high temperatures.

2. Static meson correlators

On the lattice correlators of the static meson operators in color singlet anidtestgtes at
t = 1/T have the form[[7]:

Ga(r,T) = (T U (Y, LU ey, /T, 1= ey, @)
Ga(r,T) =

(TrL () TrL(y)) — TriL' (U (Y, LU T (x . 1/T)), (2.2)

1
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whereN is the number of colord\ = 2 in our numerical calculations). Hetgx) is the temporal
Wilson line, which on the lattice is simply = ﬂ?‘;},luo(x, 1) with Ug(x, 7) being the temporal
links. The correlators depend on the choice of the spatial transpaiery;t). In the special
gauge, wher& (x,y;t) = 1 the above correlators give standard definition of the singlet and adjoint
free energies
CReTyT L t —Fa(rT)/T _ (TrL' () TrL(y))  (TrLT(X)L(y))
g F(rT)/ :N<TrL (X)L(y)), e rm/T NP — N(NZ—1) (2.3)

The singlet and triplet free energies can be calculated at high tempeimatesding order HTL
approximation[[P]. At this ordeF; andF, are gauge independent or in other words do not depend
on the choice of the parallel transportéréx, y;t). At small distances the singlet free energy is
temperature independent and coincides with the zero temperature potehtialthe adjoint free
energy depends on the temperatiife [9].

The physical free energy of a static quark anti-quark pair is given éyhermal average of
the singlet and adjoint free energies and is explicitly gauge independent

e L gremm N1 e L TrL(X)TrL(y)) = L G(r,T 2.4
© = ne® +— € = TLXTLY) = 56nT). (24)

Using the transfer matrix one can show that in the confined phpse [7]

Gi(r,T) =5 ca(e &M G(rT) =y e &N/, (2.5)
n=1 n=1

whereE, are the energy levels of static quark and anti-quark pair. The coefBag(r) depend
on the choice of the gauge transporters. The color averaged corrélatd ) does not contain
cn. The lowest energy level is the usual static quark anti-quark potentidk Wie higher energy
levels correspond to hybrid potentia[s][10]. cif = 1 the dominant contribution tG, would be
the first excited stat&,, i.e. the lowest hybrid potential which at short distances is related to the
adjoint potential. In this seng8; is related to static mesons wifp@in adjoint state. Numerical
calculations show, however, that(r) # 1 and depends on the separatiolhusG, also receives
contribution fromEy [[f]. The lattice data seem to suggest ttigpproaches unity at short distances
in accord with expectations based on perturbation theory, wherel up to &(g°) corrections
[LT]. Therefore at short distances 1/T the color singlet and color averaged free energy are
relatedF (r,T) = Fy(r,T) + TIn(N? — 1). This relation is indeed confirmed by lattice calculations

[L2].

3. Numerical results

We have calculated correlation functions of static mesBpg, T) and G(r, T) both in the
confined and deconfined phasestf(2) gauge theory. The details of the calculations are presented
in Ref. [8]. We have studied the color singlet and averaged correlgites by Egs. [(2]1) and (3.4).
The spatial links entering the transportéfx, y; 0) were smeared using APE smearing, which has
been applied iteratively. The weight of the staple in the APE smeared link \ds Bor3 = 2.5
we use spatial links with 10 steps of APE smearing and unsmeared spatialfioikg = 2.7 we
used unsmeared spatial links as well as spatial links with 10 steps and 2@&8PE smearing.



Color singlet and adjoint free energy at finite temperature Alexei Bazavov

5.5

0.95T, —&—
5l 0.76T; —o— I
45 0.63T, —a— a
45 054TC o s &5 0o
4t ’ 0.48T, 3 @ ®
N al O.4T2T8 o &
L — = *:
= 35 ’\b\ a5 | @ L
= = 35 &® Fy(r )02 p 5 é
3r ~ 4 gﬁ
v 3 B &
o
25¢1 25| o® 31 =
B ]
2 2 24 S rot?
L] L] 0 05 1 15 2
15 L L L L 15 L L L L
0 0.5 1 15 2 0 0.5 1 15 2

Figure 1: The color averaged free energy below Figure 2: The color singlet free energy below de-
deconfinement temperature @t= 2.5 calculated ~ confinement temperature At= 2.5 calculated on
on 32 x N lattices. Also shown is th& = 0 po- 322 x N, lattices. It is also shown with the contri-
tential. butionT Incy subtracted (inset).

3.1 Color averaged correlator in the confined phase

The color averaged correlator has been calculated in the confined phtse temperature
interval Q32T — 0.95T, for B = 2.5 and 049T; — 0.98T. for 8 = 2.7. The numerical results for
the color averaged free energy fBr= 2.5 are shown in Figurf] 1. To eliminate the trivial tem-
perature dependence due to the color trace normalization in Figure 1 wettshgubtracted free
energyF'(r,T) = F(r,T) — T In4 together with zero temperature potential. The color averaged free
energy does not show any temperature dependence up to temperatabesitdd76T.. Since the
temperature dependence fbr< 0.76T; is relatively small we attempted to fit the color averaged
correlator with the 1-exponential for@(r,T) = cf(r)exp(—E1(r)/T). The ground state energy
Ea1(r) extracted from this fit agrees well with the zero temperature potential cadutaRef. [1],
while the coefficientss(r) are close to one as expected.

3.2 Color singlet correlators in the confined phase

The color singlet correlators have been calculated using differernslef@PE smearing in
the spatial gauge connection. We have found that when no smearinglitheseolor singlet free
energy,—T InGy(r,T) shows a small but visible temperature dependence. In partiEy(aiT)
is larger than thél = 0 potential for intermediate distances@< r\/0 < 2. The temperature
dependence of the singlet free energy is significantly reduced whénsAtearing is applied. In
Figure[2 we show the color singlet free energyfioe= 2.5 and 10 APE smearings. As one can see
from the figure the color singlet free energy shows much smaller tempemépendence as we
get closer to the deconfinement temperature.

To understand the temperature dependence of the color singlet corvedatge 1-exponential
fit Go(r,T) = ca(r)exp(—Ex(r)/T). In all cases considered the valuesgfr) extracted from fits
are in good agreement with the calculation of the zero temperature potentiaf.in[B]. The
value of the prefactar (r) is shown in Figur¢]3. When no APE smearing is used the valog(of
strongly depends on the separatior\t small distances it shows a tendency of approaching unity as
one would expect in perturbation theory and decreases with incredstagakr. At large distance
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Figure 3: The pre-exponential factor of the color singlet correlatas function of distancefor g = 2.5
(left) andB = 2.7 (right). Shown are results for unsmeared spatial linksl@nahd 20 steps of APE smearing.

its value is around @ — 0.5. Similar results foic; have been obtained in study 8tJ(2) gauge
theory in 3 dimensiong][7]. When APE smearing is appliedrtiependence of the amplitude
c; is largely reduced and its value is close to unity bothfloe 2.5 andB = 2.7. For3 = 2.7
we also see that increasing the number of smearing steps from 10 to 2@setie deviation of
c; from unity. In any case at sufficiently short distancgds very close to one as expected in
perturbation theory. Thus, almost the entire temperature dependenae Dfidftet free energy at
distances & < ry/0 < 2 is due to the deviation af; from unity and can be largely reduced by
applying APE smearing to the links in the spatial gauge connections. To fultimeonstrate this
point in the inset of FigurE] 2 we show the resultsFefr, T) + T Incy(r).

3.3 Color singlet free energy in the deconfined phase

It turns out that the singlet free energy(r, T) = —T InGy(r, T ), calculated from cyclic Wilson
loops shares the same qualitative features as the singlet free enengategléin Coulomb gauge
[[3]. At short distances it is temperature independent and coincidestiétizero temperature
potential. At large distances it approaches a cond&liT ), which is the free energy of two
isolated static quarks at infinite separation.

At leading orderF;(r,T) — Fo(T) is of Yukawa form, therefore in Figurld 4 we show our
numerical results in terms of the screening funct®nT) =r - (F(r,T) — Fo(T)) at different
temperatures. At short distances (< 0.5) the singlet free energy does not depend on the smearing
level. Furthermore, it is very close to the free energy calculated in Coul@meg We expect that
at large distances the screening funct#n T) will show an exponential decay determined by a
temperature dependent screening masgfl ), which is equal to the leading order Debye mass
up to the non-perturbativg? corrections:m; = mp + ¢(g?). From Fig.[# we can see that indeed
S(r,T) behaves exponentially with screening mass proportional to the tempeffaittirey the large
distance behavior of the screening function by an exponential forr-er(T)r) we determine
the screening massy (T). In Fig. [4 we also show the color singlet screening masses extracted
from the fits and compare them to the results obtained in Coulomb gauge iffilBe&s[well as to
the leading order Debye mass calculated using 2-loop gauge cogpling 27T ) in MS-scheme.

As we see from the figure the screening masses are smaller than thosatedlcuCoulomb gauge
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Figure 4: The screening function at different tem-  Figure 5: The triplet free energy at different tem-
peratures as function o and different values of  peratures calculated & = 2.5. The filled sym-

B. In the inset the screening massesextracted bols correspond to calculations in Coulomb gauge.
from singlet free energies are shown. The line Also shown is the first hybrid potential calculated
shows the leading order results for the Debye mass. in Ref. [1§].

and agree well with the leading order perturbative prediction.

3.4 Color triplet free energy

We have calculated the color triplet correlator defined by Eq] (2.2) féerdifit temperatures
below and above the transition temperature. Below the deconfinement téunpeva observe a
moderateT -dependence of the triplet correlator. We also find that the corresppfiee energy
—TInGg(r,T) is smaller than the first hybrid potential calculated in REf] [10], but largem the
triplet free energy in Coulomb gaugeJ13].

Let us assume that only two states contribute to the Bqs. (2.5). Then fro@B}it follows
that 1

Fa(r,T) = Ea(r) = TIn(1—cy(r) + é(1—c1(r))eAE<f>/T), (3.1)

with AE(r) = Ep(r) — Ex(r) andc, < 1. We have subtracted the correctibm(1+ 3(1—c;)e*E/T)
from the triplet free energy assuming tH&fr) is given by the ground state potential a&gr) is
given by the first hybrid potential as calculated in REf] [10]. The nuraéresults are summarized
in Fig. B which shows that after this correction is accounted for in the cahfihase the triplet free
energy at low temperatures agrees reasonably well with the first hyttéehial. As temperature
increases more excited states contribute. In particular/&T0the value of the triplet free energy
can be accounted for by including the next hybrid state [10].

4. Conclusions

We have studied singlet and triplet static quark anti-quark correlatorsite femperature
SU(2) theory expressed in terms of Polyakov loop correlators and cyclic Wilsipsldn leading
order and probably next-to-leading order of perturbation theory the starrelators defined by
Eq. (2.1) and[(Z]2) project onto singlet and triplet states respectivelyever, this separation
does not hold in general case. Due to interactions with ultrasoft fields thidlrbe a mixing of
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singlet and triplet states which is proportionalad(1/r) and (ru)4, with u being the ultrasoft
scale [1[L]. In our case the ultrasoft scale can be the binding eneyay, Nqcp or g°T. Therefore

it is expected that mixing is quite small at sufficiently small distances. We detetrthieanixing
between singlet and triplet states in terms of the overlap fagtoy. If the overlap factor is unity
there is no mixing. Our lattice calculations show thaindeed approaches one at small distances.
Therefore the contribution of singlet state®a(r,T) appears to be small at temperatures close
to deconfinement temperature. This contribution is also controlled by the@emunrbative gap
between the singlet and triplet states, i.e. the gap between the static potedtibédinst hybrid
potential.

Our analysis shows that at short distances< 1 the singlet correlator is almost temperature
independent, while the triplet correlator is largely affected by the decamfémt. The temperature
dependence of the triplet correlators indicate the melting of the non-patitelyap between the
singlet and the triplet states above deconfinement, which turns out to distemt with perturbative
expectations. This finding is important for application of thermal pPNRQCDudised in Ref.[[14]
to realistic quarkonia and temperatures not very far from the deconfimderaperature.
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