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1. Introduction

Sufficiently hot and dense hadronic matter undergoes aitian$rom a confined hadronic
phase to a deconfined, chirally symmetric medium, the qulaikngplasma (QGP). At zero chemi-
cal potential, the transition has been established bgta@CD simulations, which have proven to
be a powerful method to analyze the non-perturbative featafthe QGP close to the transition re-
gion. At non-zero chemical potential, however, latticedmtions are limited by the sign problem.
In fact, direct simulations by standard Monte Carlo methagsnot possible. In order to evaluate
the response of the medium to a small non-zero chemical {miteme perform a Taylor expansion
of the pressure (grand canonical potential) [1]. For thestlisionless combinatiop/T* we define
the expansion coefficientsx as

BBl g () () () =

Here i, g s are the chemical potentials of up-, down- and strange-guadspectively. The coeffi-
cientsg; j x have been calculated previously using staggered [2, 3,@hdMWilson [6] quarks. As
they are evaluated at vanishing chemical potential they @levide important information about
thermodynamic properties of QCD at vanishing baryon nundeesity.

We present here preliminary results on the smallest noisiiny coefficients which are
C200 = €3, Coo2 = C3, C110 = cﬂ' andcigr = cﬁ.z Apart from these basic coefficients characterizing
fluctuations and correlations for different quark flavor® @onsider combinations of them that
yield iso-spin (1) and electric charge (Q) fluctuations,

1
&= (oe ).

1
S (5c5 oS- 2chd cﬁ) . (1.2)

In general, the second order coefficients are related touthdragtic fluctuations, also known as
susceptibilitiesy, of the corresponding charge densitiag)( Fourth order coefficients are related

to the quartic fluctuationg,. In terms of the expansion coefficients we have

S

XX
T_22 = <n§(> :2C>2(,
X
% = (n})-3(m2)2=24cf with Xe{udsl,Q,...}. (1.3)

In Fig. 1, we show results faz; andc) for X = u, scalculated with staggered fermions [3].
It is apparent that} varies rapidly ana} peaks within a small temperature range. This behavior
may be interpreted as signaling a transition from a confirtede consisting of heavy hadrons to a
deconfined phase consisting of partons. In fact, the péﬁb/ x§X> is directly related to the squared
unit charge of quantum numbg, for the relevant degrees of freedom [7].

The phase diagram of the QGP jat= 0 is by now believed to be understood quite well.
E.g, we have plenty of evidence that the transition is a sharpsonwer, rather than a true phase

1it can be shown that the odd-order coefficients vanish tHrdZig-symmetry.
2In the 2+1-flavor theory up and down quark masses are degend@ize coefficients;x andcji are thus equal.
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Figure 1: Staggered quark results for the Taylor coefficiesiS andc,®, obtained with (2+1)-flavor of
p4fat3 fermions omN; = 4 and 6 lattices [3].

transition. Hence, the general behaviorcgfandc, as shown in Fig. 1 will not change, even in

the thermodynamic limit. They may, however be sensitivehtovalues of the light quark masses.

At vanishing light quark mass, the transitiontat= 0 is expected to be second order, in the same

universality class as the three-dimensio@é#l)-models. In this case the appropriate scaling field

t (reduced temperature) in the vicinity of the phase tramsif8] depends on a combination of
T-Te

andu
2
U
Jelea(s) »

This explains the general structure of the temperature ralpee ofc,,. We thus may expect
that the behavior of thé2n)-th p-derivative of the partition function is similar to that dfetn-
th temperature derivative; e.ge ~ dInZ/dT <« ¢ ~ d%InZ/du?. A plot of c§ versus the
temperature thus shall resemble the corresponding plah®energy density, while that m:ﬁ(
shall resemble the specific h&at

We expect this general pattern of the expansion coefficiaists to be reproduced in calcu-
lations with domain wall fermions. Details of the temperatdependence, in particular at low
temperature, may, however, be sensitive to chiral pragef the lattice discretization scheme
used. Our main interest in performing these calculatiogs &ith domain wall fermions thus is to
understand to what extent the better chiral symmetry offéhiimion action shows up in thermody-
namic observables that are directly sensitive to the hasipectrum.

t=

1.1 Beyond the Staggered Formulation

Chiral symmetry plays an important role in determining tla¢ure of the QGP transition. In
the staggered formulation, the fil8U(3),. x SU(3)r chiral symmetry is explicitly broken; at non-
zero values of the lattice spacing only twd1) subgroups remain; one in the light and strange
quark sector, respectively. As a consequence universglepies at the chiral phase transition
(in the chiral limit) may be recovered only in the continuuimit. Moreover, the loss of full
chiral symmetry leads to too few light degrees of freedonoattemperatures.g. one light pion
instead of three, which may influence bulk thermodynamigertes in this regime. Furthermore,
guestions have been raised about the validity of “the rgdtick” used for staggered fermions [9],
which at present are not fully settled [10, 11].
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It is clearly desirable to go beyond the staggered formutatind work with a fully chiral
formulation. Domain Wall Fermions (DWF) meet these cré€l2]. In this formulation, one
introduces a fifth dimensiofx,y,zt,s), so that the lattice dimensions ak& x N; x Ls. Only
fermions can propagate along the fifth direction; the gaugddiexist only on the 4-dimensional
slicess=0,1,...Ls— 1. For this reason, the Domain Wall formulation can also loeigint of as a
theory ofLg fermion flavors coupled in a nontrivial way. When one simegahe theory, one finds,
among other massive modes, two solutions that satisfy [13]

4
Mawi(p)] s W5 (p) = (—i 3 sir pu> w{ (p), (1.5)

p=1

whereMgy ¢ is the Domain-Wall matrix and a sum owiis implied. Furthermore, these modes are
eigenstates ofs and their wavefunctions are found to be localized on the tygehplanes =0
ands = Ls— 1 respectively. These are exactly the chiral modes we wasindJaPauli-Villars
subtractionallows to remove contributions of the heavy modes [14] whégtves us with a theory
that is, forLs — oo, chiral-invariant under the full symmetry group. At finitalues ofLg a so-
called residual mass leads to violations of chiral symmeimypractice one is forced to perform
calculations at small lattice spacings to suppress thesgua mass effects. For thermodynamics
calculations this means that calculations should be paddrforN; > 8 and/or sufficiently large
Ls to suppress the residual mass effects. In fact, the caloogatve present here only marginally
satisfy these constraints [15] and thus should be consldes e first feasibility study.

2. Detailsof the Simulation

We use here finite temperature 2+1-flavor dynamical domaithfermion ensembles gener-
ated by the RBC-Collaboration [15]. The lattice dimensiares16 x 8 x 32. The light and strange
quark masses used in these calculationsaang= 0.003 andams = 0.037, and the domain-wall
height and anisotropy factor weedMs = 1.8 anda/as = 1.00 respectively. The gauge configu-
rations have been generated at several different valuggeafdupling, ranging fron8 = 1.95 to
B = 2.14. This covers the transition region from low to high tengperes. On these data sets we
started to calculate the lowest order expansion coeffgient

The expansion coefficients can entirely be expressed irstefriraces of the (5-dimensional)
DWF fermion matrices over space-time, color and spin irliéeor the diagonal and off-diagonal
coefficients we obtain from derivatives of the fermion ness for light (M) and strangeMs)
quarks,

1 &M ,dM _ dM of . 10M
cé_m{<tr<|v| W>>—<tr<|\/| MM M>>+<tr <M M>>} (2.1)

and
1 dM dM
Y _ -1 -1
o’ = VT <tr <M dux> " (M d[.ly> >’ 22)

respectively. Here we used the shorthand notatloa My for X = u, s. We estimated the traces
using the stochastic random noise method with around-1D80 random vectors for each trace.
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Products of traces were evaluated in an unbiased mannee Siomlation details and our current
statistics are summarized in Table 2.

B # conf. | separation| # r.v.
2.14 40 10 100
2.11 35 10 100
2.0625| 111 10 150
2.05 81 25 150
2.0375| 96 20 150
2.025 71 20 150
2.0125| 125 10 150
1.975 61 10 150
1.95 73 10 150

Table 1. Details of the calculation: The columns give from left tohidhe values of the lattice coupling
B, the number of evaluated configurations, the number ofdrajees by which these configurations are
separated and the number of random vectors used for theatialwf the traces.

3. Results

A word about the systematic errors: It can be shown that domall fermions satisfy the same
dispersion relation as naive fermions [16]. This impliesttthermodynamic quantities computed
with the standard DWF action shall hav&a?) cut-off errors that are of the same magnitude as
those of a standard staggered or naive fermion discratizattheme. This translates+o0l0% cut-
off errors atN; = 8 [17]. Remarkably, the above continues to be true even #feemtroduction
of a chemical potential, with only the magnitude of the coticn changing [17, 18]. We note in
passing that thesg-dependent cut-off corrections can be computed exactlgerideal gas limit;
they are given by Bernoulli polynomials.

The statistical error in the susceptibilities was deteedify the jackknife method. There
are two independent contributions to the error: The err@ tuthe finite size of the ensemble
and the error in the trace due to the finite number of randorntor&c The latter was found to be
especially severe for the “disconnected” contributionsiclv are the products of traces in Egs. (2.1)
and (2.2). This shows up in the large error bars for the caoeffiscy, c; and especially the off-
diagonal coefficients}d andci$, as can be seen from Fig. 2. Althoughandcs do transit from a
low value to a high one, it is difficult to assign a correspogdiransition temperature or equivalent
a couplingf = Bg.

The disconnected contributions completely or partiallpaed each other in the iso-spin and
electric charge expansion coefficiengsandCZQ. This results in much smaller errors for these two
guantities as can be seen in Fig. 3. The coefficie!ptmdc;g show a smooth transition from a low
to a high value. There is some indication that they will oliertt the Stefan-Boltzmann (SB) ideal
gas values at higher temperatures. This would be expeatadtfre analysis of cut-off effects in
thermodynamics within the DWF formulation [17]. This dessy further analysis.
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Figure 2: The expansion coefficienty, ¢ (left) andctd, ci$ (right) as a function of the coupling.

As we do, at present, have no results on higher order expagsifficients, e.gcy, which
could directly be used to identify a pseudo-critical conglirom the location of a peak n:lf we
estimate a pseudo-critical coupling = By, from fits ofc(zQJ). We use the ansatz [13]

2 = Atanh{B(B — 1)} +C. (3.1)

The resulting curves are also shown in Fig. 3, superimposeitied data points. Table 3 contains
the best fit values of the free parametar®, C andfy.
For the transition value of the coupling we obtgin= 2.0286) (B4 = 2.030(7)) from the
fit to c'2 (cg). This value is in agreement with the vale = 2.031(5) obtained by the RBC-
collaboration [15] from an analysis of the chiral condeasa/e thus find that the deconfinement
transition and chiral symmetry restoring transition odouhe same narrow temperature interval.
From a determination of the Sommer parametea;, *|5_g, = 3.25(18), the group was also
able to deducd. = 171(10)(17) MeV [15]. While the latter error arose from the chiral and €on
tinuum extrapolations, the former was due to the fact thardisidual mass varied across the tem-
perature range and was significantly large Sof ..
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Figure 3: c, andcg as function of the lattice couplin@. The smooth curve is a fit of the ansatz given in
Eq. 3.1 to the data; the best fit values are given in Table 3.
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A B C Bd x?/dof
d, | 0.49(5)| 14.1(2.3)| 0.57(3)| 2.028(6) | 1.028
¥ [ 0.16(2) | 13.3(2.7)| 0.19(1)| 2.030(7) | 1.418

Table 2: The best fit values and their errors for the fitong) to the ansatz given in Eq. 3.1.

We have stressed earlier that the current analysis is etplyr and that, in particular, the
residual mass effects inherent in the DWF ansatz need talbeed through calculations performed
for large values ot s and/orN;. Clearly, this requires a more thorough analysis in theréutu
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