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The strong coupling limit (βgauge = 0) of lattice QCD with staggered fermions enjoys the same
non-perturbative properties as continuum QCD, namely confinement and chiral symmetry break-
ing. In contrast to the situation at weak coupling, the sign problem which appears at finite density
can be brought under control for a determination of the full (µ,T ) phase diagram by Monte Carlo
simulations. Further difficulties with efficiency and ergodicity of the simulations, especially at
the strongly first-order, low-T , finite-µ transition, are addressed respectively with a worm algo-
rithm and multicanonical sampling. Our simulations reveal sizeable corrections to the old results
of Karsch and Mütter [1]. Comparison with analytic mean-field determinations of the phase dia-
gram shows discrepancies of O(10) in the location of the QCD critical point.
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Revisiting strong coupling QCD at finite T and µ Michael Fromm

MC: m = 0.1

MC: CEP, T = 1/2,  m ~ 0.04

Figure 1: Phase diagram of strong coupling QCD obtained analytically in the mean-field approximation,
from [5]. For vanishing quark mass, the first-order transition (solid line) at low temperature turns second-
order (dashed line) at a tricritical point (TCP). For non-zero quark mass, the first-order transition ends in a
critical endpoint (CEP), whose trajectory as a function of the quark mass is shown by the dotted line. Also
displayed are points obtained by the present MC-study: Red dots are transition points for m = 0.1, the red
circle shows the CEP for T = 1/2: (m≈ 0.038,µ ≈ 0.58).

1. Introduction

We consider lattice QCD with Nc = 3 colors and 1 species of staggered fermions (i.e. 4
continuum flavors) at vanishing gauge coupling. The grand canonical partition function is given by

Z(m,µ) =
∫

DUD χ̄Dχ eSF (1.1)

with
SF = ∑

x,ν
χ̄x

[
ηx,ν̂Ux,ν̂ χx+ν̂ −η

−1
x,ν̂U†

x−ν̂ ,ν̂ χx−ν̂

]
+2m∑

x
χ̄xχx , (1.2)

where ηx,ν̂ = eµ (ν = 0) and (−1)∑ρ<ν xρ otherwise1. Like continuum QCD, this model shows
confinement and chiral symmetry breaking. Therefore, it has been the object of numerous analytic
studies since the earliest days of lattice QCD, focusing on the mass spectrum [2, 3] and the (µ,T )
phase diagram [4, 5, 6], using increasingly refined treatments, all based on the mean-field approxi-
mation. These investigations are continuing to this day [7]. In contrast, very few numerical studies
have been performed. Karsch and Mütter [1] showed how to express Z(m,µ) as a gas of loops,
the monomer-dimer-polymer (MDP) ensemble, where the sign problem arising at finite chemical
potential is very much reduced. They used this formulation to locate the T ≈ 0 finite-µ transition,
which they found to agree with mean-field predictions. Karsch et al. [8] also found the µ = 0 finite-
T transition to be consistent with the expected O(2) universality class in the chiral limit, turning
into a crossover for finite quark mass. But a more complete determination of the (µ,T ) phase dia-
gram is lacking. Moreover, Azcoiti et al. [9] reported ergodicity problems with the MDP algorithm

1In our notation, all quantities m,µ,T, .. are dimensionless, and should be understood as including the appropriate
power of the lattice spacing a.
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(a) (b)

Figure 2: Sample configuration with (a) baryonic loop (dashed line) and (b) D1−D2 polymer loop.

of [1], casting some doubt on the T ≈ 0, finite µ results. This is particularly interesting because of
a mismatch between the critical value of the chemical potential at T ≈ 0, µc(T ≈ 0,m = 0) = 0.66,
according to both mean-field [6] and Monte Carlo [1], and the baryon mass MB ≈ 3 according to
mean-field. One would expect µc ≈MB/3, unless the nuclear interaction is strong. A determination
of MB was performed in [10], using conventional HMC at βgauge = 0. The value agrees closely with
mean-field. Thus, we now want to determine the (µ,T ) phase diagram by Monte Carlo simulations,
paying special attention to the value of µc(T ≈ 0).

The phase diagram can be understood from symmetry considerations. In the chiral limit m = 0,
the action Eq. (1.2) enjoys the staggered U(1)×U(1) symmetry

χ → eiφV +iε(x)φA χ, χ̄ → e−iφV +iε(x)φA χ̄, ε(x) =−1∑
d
ρ=0 xρ (1.3)

where U(1)A breaks spontaneously at small µ and T , giving rise to a chiral condensate σ ≡
−〈∑a,x χ̄a

x χa
x 〉. Different mean-field approximations all lead to a phase diagram which is quali-

tatively similar to Fig. 1 with some quantitative differences. The symmetry is restored at large T or
µ , by a phase transition which is first-order at low temperature, turning second-order at a tricritical
point (TCP), much like what is expected in real QCD with N f = 2 massless flavors. For non-zero
quark mass m where U(1)A is broken explicitly, the second-order transition becomes crossover,
and the TCP becomes a critical endpoint (CEP). The behaviour of the CEP as the quark mass is
increased is of particular interest, given recent unexpected findings for N f = 3 and (2 + 1) flavors
on coarse lattices [15]. The dotted line in Fig. 1 shows the trajectory of the CEP in the mean-field
approximation: it agrees with conventional expectations for real QCD.

2. Theoretical background

The usual strategy to deal with the Grassmann fields χ, χ̄ in Eq. (1.1) is to integrate them out,
which yields the customary fermion determinant. At strong coupling, the absence of a gauge action
allows for an alternative strategy: one integrates over the gauge links U first [11]. This leads to (for
Nc = 3):

Z(m,µ) =
∫

D χ̄Dχe2m∑x χ̄xχx ∏
x,ν

Fx,x+ν̂ (2.1)

with

Fx,x+ν̂ =
3

∑
k=0

αk(MxMx+ν̂)k +
[
B̄xBx+ν̂η

3
x,ν̂ − B̄x+ν̂Bxη

−3
x,ν̂

]
, αk =

(Nc− k)!
Nc!k!

. (2.2)
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Figure 3: Monte Carlo history of baryon density, for local Metropolis (left) and Metropolis+global worm
updates (right), for runs with m = 0.025,43×2 at µc ≈ 0.565 using similar CPU time.

The new degrees of freedom are color singlets: monomers Mx = ∑a χ̄axχax, dimers Dk,xy =
1
k!(MxMy)k,k = 1,2,3, and baryons and antibaryons Bx = 1

6 εabcχaxχbxχcx, B̄x = 1
6 εabcχ̄cxχ̄bxχ̄ax.

Moreover, the Grassmann integration generates a “close-packing” constraint: exactly Nc quarks
and Nc antiquarks must be present at each site. This implies that baryon loops CB, representing
Π〈x,y〉∈CBB̄xBy in Eq. (2.1), are self-avoiding. It also implies, for the other sites x, that nx +∑bx nbx =
Nc, where nx is the number of monomers on x and nbx the dimer occupation number (bond number)
of the link bx connected to x (see Fig. 2). Taking this into account we arrive at the final expression

Z(m,µ) = ∑
{nx,nb,CB}

∏
b

(Nc−nb)!
Nc!nb! ∏

x

Nc!
nx!

(2m)nx ∏
CB

w(CB) . (2.3)

Baryon loops CB come in two orientations (±) and carry weight

w(CB,±) = ε(CB)exp(±3`Lt µ) , (2.4)

where ε(CB) is a sign factor depending on the loop geometry, and ` ≥ 0 is the winding number
around the time direction of extent Lt . There also exist self-avoiding, non-oriented meson loops,
which consist of alternating D1 and D2 dimers (see Fig. 2(right)). Thus, for a given loop geometry
C, the partition function should sum over 4 types of loops: two baryon loops with weights w(C,±),
and two meson loops related by D1 ↔ D2, with weight +1. Karsch and Mütter [1] had the idea of
regrouping these 4 contributions in 2 sets, by associating with each meson loop half of (w(C,+)+
w(C,−)). In this way, only non-oriented polymer loops C enter in the partition function, with
weight

(1+ ε(C)cosh(3`Lt µ)) . (2.5)

The sign problem, which would have been severe in Eq. (2.3), is now much milder. In particular,
for µ = 0 one recovers non-negative weights. Moreover, it turns out that the sign problem is very
much reduced in comparison with that present in the determinant approach, when one integrates
over fermions first. This makes the study of QCD at large µ and low T possible.

3. Algorithmic issues

The MDP system defined by (2.3), (2.5) was sampled in [1] using a local Metropolis algorithm
which operates on pairs of neighbouring sites and tries to replace two monomers (one on each
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Figure 4: (a) Baryon density nB versus chemical potential, for systems L3×Lt at m = 0.1, (b) same, for
masses m = 0,0.025,0.05,0.1 and system 103×2.

site) by a dimer on the connecting link or vice versa. Since a monomer carries weight ∼ m, this
prescription is not ergodic in the chiral limit or the infinite-mass limit. Simulations in [1] were
performed over a narrow range of masses. Even so, ergodicity problems were later reported by
Azcoiti et al.[9], which cast some doubt on the results of [1]. Therefore we supplement the local
Metropolis update above by a worm algorithm [12], which was first adapted to strongly coupled
gauge theories in [13]. In Fig. 3 we show the Monte Carlo history of the baryon density in a 43×2
system at low quark mass m at the critical µ , for both algorithms. The computer time spent is
similar in both cases. In the Metropolis case, changing the baryon density proceeds via changing
the monomer density, which is very unlikely. In the worm case, a pair of monomers (the head and
tail of the worm) is created; then the head is propagated in a succession of nearest-neighbor hops
until it meets again the tail and annihilates with it, yielding a new contribution to Z having the same
monomer density, but substantially different baryon density. This allows for efficient simulations
over the complete range of quark masses. In particular, simulating near or at the chiral limit poses
no special problem.

Nevertheless, we still have another difficulty: at low temperature, the finite-µ transition be-
comes strongly first-order, which makes a correct sampling of the low- and high-density phases
problematic. To address this issue, we employ Wang-Landau sampling [14] to extract an estimator
for the probability

P(O,µ,m)∼ ∑
k={nx,nb,C}

δ (O−O(k))wk (3.1)

of a suitable observable O such as the energy density ε = 1
V

∂

∂T logZ or baryon density nB =
1

3V
∂

∂ µ
logZ. The inverse of the resulting histogram is then used as a weight for multicanonical

simulations. Note that the weight wk defined in Eqs. (2.3) and (2.5) allows for reweighting in both,
µ and m, once the numbers of monomers and loops with winding number ` for each configuration
are known. Hence, the resulting data from multicanonical sampling can be safely reweighted to
parameter regions where the corresponding histogram is sufficiently flat.

4. Numerical results

We first reproduced the µ = 0,T ≈ 0 results of [10] for the chiral condensate, meson and
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Figure 5: Probability distribution P(σ) for masses m = 0.025,0.038,0.05 tuned to criticality on systems
L3 × 2, L = 8,10,16. A satisfactory data collapse is observed for the middle mass, using Ising critical
exponents.

baryon masses. This is a non-trivial consistency check between the two strategies of first integrating
over the gauge links (this work) or the fermions (followed by HMC) [10].

Then, we fix the quark mass to m = 0.1 and perform a comparison with [1], who found a
phase transition at µ ≈ 0.69 on an 83 × 4 system, i.e. at temperature T = 1/4. Fig. 4(a) con-
firms the problems of ergodicity reported by Azcoiti et al. when using the local Metropolis (data
taken from [9]). Already on a 44 system, the simulation remains on one of the two metastable
branches (density near zero (black triangles) or near the saturation value of 1 baryon per site (black
squares)), and one is unable to determine the critical value µc of the chemical potential. The Wang-
Landau/multicanonical approach allows an ergodic sampling of the critical region. The results (red
stars, continuous line) indicate µc ≈ 0.64, which is significantly smaller than the value ≈ 0.69
of [1], presumably obtained from the end of the metastability branch. Fig. 4(a) also shows higher
temperature (Lt = 2) results indicating a smoother transition (as expected) and a slight shift of µc

to smaller values (as opposed to the theoretical predictions of Fig. 1).

We now take full advantage of the worm algorithm and explore the chiral limit at fixed tem-
perature T = 1/2 in Fig. 4(b). As the quark mass is reduced, µc shifts to smaller values, and the
transition becomes first-order, in qualitative agreement with expectations. The order of the tran-
sition can only be ascertained by a finite-size scaling study, which is illustrated in Fig. 5. For
increasing mass values, the 3 panels each show the probability distribution of the chiral condensate
for 3 spatial volumes. In each case, the distribution is reweighted to the pseudo-critical value of
µ . The transition is clearly first-order for the smallest mass, and crossover for the largest. For the
middle mass, an approximate data collapse is obtained by rescaling the condensate by L

γ

2ν , using
γ = 1.237 and ν = 0.631 characteristic of the 3d Ising universality class. Indeed, for m > 0 the U(1)
chiral symmetry is broken explicitly, so we expect no special symmetry breaking other than Z(2)
to happen at the transition. Thus, we determine the critical endpoint for temperature T = 1/2 to
be approximately (mc ≈ 0.038,µc ≈ 0.58) (see Fig.1). This can be compared with the mean-field
prediction (mc ≈ 0.4,µc ≈ 0.81) (Fig. 1) [5]. The discrepancy is an order of magnitude in mc!
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5. Outlook and conclusions

We have presented first results of our study of the strong coupling limit of lattice QCD at fi-
nite µ and T . The comparison with mean-field results and with the original Monte Carlo study
of Karsch et al. clearly justifies our project. Algorithmic advances largely suppress the ergodicity
problems of the latter study, and lead to reliable, new estimates for µc over a range of masses.
The large discrepancy between exact Monte Carlo and approximate mean-field determinations of
the CEP at T = 1/2 emphasizes the need for an exact determination of the whole phase diagram.
Quantitative mean-field results should be considered with caution.
Our next step includes the determination of the phase diagram in the chiral limit, and the introduc-
tion of asymmetric couplings to vary the temperature continuously. As simulations in the chiral
limit do not pose any problem for a wide range of parameters, further topics of interest might
include a detailed comparison with chiral perturbation theory, and ρ → ππ decay.
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