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Using the overlap Dirac operator | show that, contrary to e@rpectations, even well above
the critical temperature there is not necessarily a gapdrbihac spectrum in pure SU(2) gauge
theory. This happens when the Polyakov loop and the ferm@m&ary condition combine to
give close to periodic boundary condition for the fermiamghe time direction. In this Polyakov
loop sector there is a non-vanishing density of Dirac eigeres around zero which implies that
chiral symmetry is spontaneously broken. | demonstratehbth directly and also by finding
good agreement with the random matrix theory predictioriferdistribution of the lowest Dirac
eigenvalue. | show that the chiral condensate increaséstihgttempereture therefore it is very
unlikely to be explained by topological fluctuations thattee rapidly smaller abovi. Finally

I show that it is only a small fraction of the lowest Dirac eigealues that decide which Polyakov
loop sector is favored by the fermion determinant if dynahiermions are turned on. This pro-
vides a qualitative understanding of how the loss of confier@rabovel. implies the restoration
of chiral symmetry.
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1. Introduction

It is generally accepted that four dimensio®(N) gauge theories have a high temperature
deconfined phase with the Polyakov ladfiN) symmetry spontaneously broken. This is in the the-
ory without dynamical fermions. Including massless dyrahfermions will change this picture
since the fermionic determinant breaks #@ ) symmetry explicitly. However, even in this case
the transition from the low to the high temperature phasédsacterized by a substantial increase
of the expectation value of the Polyakov loop.

Another important feature of the theory with massless fenmiis that the transition to the
high temperature phase is accompanied by the restoratichiraf symmetry that is spontaneously
broken at low temperatures. Generally in QCD-like theothes chiral and the deconfinement
transition take place at roughly the same temperature dkgga of whether the transition is a cross-
over or a genuine phase transition [1]. How the deconfinirgythe chiral transition are linked is
an important and as yet even qualitatively not understo@stipn.

The study of the interplay between the Polyakov loop andatsymmetry restoration has a
long history. More than 10 years ago Chandrasekharan ardt@bticed that in quenched QCD
the chiral condensate vanishes in the high temperaturesuimdg if the phase of the Polyakov loop
is real [2]. Inspired by this intriguing result Stephanoedsandom matrix theory to predict that
both in theSU(2) andSU(3) case the chiral restoration temperature depends on thalwelyoop
sector. Moreover, in the SU(2) case chiral symmetry is etgueto remain broken at arbitrarily
high temperature provided the Polyakov loop is negative [R8irther support to this scenario was
given by calculations in the Nambu-Jona-Lasinio model [4, 5

More recently direct lattice simulations have also beeffopered to check whether this really
happens. Based on the appearance of a spectral gap &biovthe SU(3) case, Gattringer et al.
concluded that the chiral restoration occurs at the sampedgature in all Polyakov loop sectors.
They, however, found that the spectral gap abGyvdepends on the Polyakov loop sector [6]. In
contrast, in theSU(2) case, Bornyakov et al. concluded that in the negative Polyédop sector
chiral symmetry remains broken upTo= 2T; [7, 8].

In summary, the somewhat controversial picture is that tiigeRov loop has a strong influ-
ence on the chiral condensate, especially inSb¢2) case. A further question in this connection
is how a chiral condensate well in the high temperature pbasée understood based on mixing
instanton anti-instanton zero modes, given that the tapcdd charge density rapidly drops above
Te.

To shed some more light on these questions, in the preseat papudy the low end of the
spectrum of the overlap Dirac operator in quencBel{2) gauge backgrounds well aboVe In
particular | look at how the spectrum is influenced by the Bkby loop sector in the high temper-
ature phase. | also study how the fermion determinant “&2l@cgiven Polyakov loop sector and
how this mechanism connects deconfinement and chiral symmestoration.

2. Simulation parameters

Let us first summarize the parameters of the simulationsof&he runs are quenched Wilson
action SU(2) lattices atf3 = 2.60. This is the critical3 for Ny = 10.4. In the present study |
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Figure 1. The density of low eigenmodes of the overlap Dirac operatdhé two Polyakov loop sectors.
The vertical line indicates the lowest Matsubara mode irgilien box size.

chose to fix3 to avoid renormalization issues for the chiral condenshtaried the temperature
by choosing\Nt = 4 and 6, which correspond To= 2.6T; and 17T, respectively. | also varied the
spatial size of the box to check the scaling of the low eigkrvdensity with the volume.

On these lattices | computed the lowest 16-32 eigenvaluéiseodverlap Dirac operator [9],
which is defined in terms of the Wilson Dirac operally as

1
Dov=1-A[ATA] 2, A=1+s—D,. (2.1)

The real parametes was chosen to be.® by maximizing the average lowest eigenvalue of the
kernel ATA,

3. Chiral condensate

To see how the Polyakov loop influences the chiral condems&igure 1 | plotted the low end
of the eigenvalue density of the Dirac operator in both RHalydoop sectors. Here the temperature
was chosen to b& = 2.6T; (Nt = 4), well in the high temperature phase. The difference betwe
the two sectors is dramatic. On the one hand, inRhe O positive Polyakov loop sector there is
a sizeable gap in the spectrum and the density of modas=a0 is clearly zero. On the other
hand, in theP < 0 sector the eigenvalue densitylat= 0 is obviously non-vanishing. Through the
Banks-Casher relation [10] this implies that at this terapee chiral symmetry is restored only if
the Polyakov loop is positive.

Note that the fermion boundary condition in the time directis anti-periodic and in th8U(2)
case a change from periodic to antiperiodic boundary cmmdi$é exactly equivalent to flipping the
sign of the Polyakov loop. Figure 1 shows that the gap in tleetspm appears if the anti-periodic
boundary condition and the Polyakov loop combine to give ffective anti-periodic boundary
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Figure 2: p(0), the density of modes of the overlap Dirac operator norredlizy the four-volume in spatial
boxes of various sizes in the negative Polyakov loop sector.

condition to the fermions. Moreover, the gap is roughly éqodhe lowest Matsubara frequency
of the fermions alNt = 4, which | also indicated in the same Figure. | also checkatlttfis also
happens folNt = 6 (not shown in the Figure).

In order to establish the presence of a non-zero chiral ¢wade in the negative Polyakov
loop sector one should check that the eigenvalue densitgndreero scales with the three-volume.
In Figure 2 | show the eigenvalue density normalized by theme in spatial boxes of different
sizes. The size of the lattice in the spatial directions vewgiin units ofNr_, the length scale cor-
responding to the critical temperature, i.e. the confingreeale. The eigenvalue density appears
to be constant down to spatial sizes of roughly the confineémeale. This shows that indeed, the
chiral condensate persists even at these temperaturdédgmtdiaie Polyakov loop is negative.

This scenario is further supported by comparing the digtioin of the lowest Dirac eigenvalue
with the prediction of random matrix theory (RMT). Since histhigh temperature most of the
configurations belong to the topological sectpe= 0 | do the comparison only in this sector. In
Figure 3 | show the cumulative distribution of the lowestdgimode compared to the analytically
known RMT prediction for the chiral orthogonal ensemble][ttiat is supposed to describe the
SU(2) theory. This comparison involves one adjustable param®BterwhereX is the value of the
chiral condensate and is the volume.%V is used to rescale the eigenvalues to fit the eigenvalue
density to the universal RMT curve. If the spatial volumeagke enough, the distribution of the
rescaled eigenvalues agrees well with the RMT predictiaditeg further support to the presence
of a non-zero condensate.

The non-zero Dirac eigenvalue density arouneg= 0 and as a consequence the chiral con-
densate are usually attributed to mixing instanton arstiainton would-be zero modes. Since the
topological charge scales with the volume these would-be aedes are in principle capable of
providing an eigenvalue density that is also proportioodhe volume. There are also speculations
that the chiral condensate in the high temperature phaskt migo be due to topological charge
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Figure 3: The cumulative distribution of the rescaled lowest Diraeeivalue in th€ = 0 topological sector
compared to the prediction of random matrix theory for thieatlorthogonal ensemble.

fluctuations, in particular calorons. On the other handhassiystem is heated above the critical
temperature, the topological susceptibility starts tqpdsbarply. If the understanding of low Dirac
eigenvalues based on topological fluctuations continugstk above the critical temperature one
expects the eigenmode density to drop with the topologigsteptibility. In sharp contrast with
that in Figure 1 the eigenmode density can be seen to incvattséne temperature going up. The
opposite behavior of the topological susceptibility and #igenmode density strongly suggests
that abovel, topological fluctuations become less and less responsiblew eigenmodes and as
the temperature goes further up some other yet unknown mischaakes over.

4. Dynamical fermions: how they select the “correct” Polyalov sector?

We have seen that in the negative Polyakov loop sector thaeliral condensate that even
increases with the temperature. At this point one couldlaskjtiestion how in the real world chiral
symmetry is restored abovik. The answer is that the fermion determinant breaks the Ralya
loop symmetry explicitly. Our experience is that abdydoth in theSU(2) and theSU(3) case the
fermion determinant “favors” the sector where the Polyakmp lies along the positive real axis.

This can be gqualitatively understood based on the aboveisismn of how the gap in the
Dirac spectrum is connected to the lowest Matsubara frexyuerhe positive real Polyakov loop
is exactly the one that combines with the anti-periodic fermboundary condition to give the
largest possible effective twist to the fermions in the tidirection and the largest first Matsubara
frequency. This in turn results in fewer low modes and a lavghie of the determinant on average.

Is it really only the lowest modes that decide which Polyalanp sector is favored by the
determinant? Modes higher in the spectrum can also depetitedPolyakov loop and since there
are far more of those, in principle they can also have a siegatiuence. To decide this | computed
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Figure 4: The difference in fermion action between periodic and petiodic boundary conditions on a
single & x 4 configuration at WilsorB = 2.40. Flipping the boundary condition is exactly equivalent t
transforming the configuration to the other Polyakov loogt@e The horizontal axis depicts the number of
smallest eigenvalues included when computing the actifferdnce. The two curves both correspond to a
single flavor of fermion, but with different masses.

all the eigenvalues of the overlap Dirac operator on smatlphysically relevant lattices. If all the
eigenvalues are available in both Polyakov loop sectorscamebuild up the difference in the
fermion action starting from the low end of the spectrum.

In Figure 4 | plotted how the action difference between the $ectors depends on the number
of eigenvalues included in the determinant. This was doresingle 8 x 4 configuration at Wilson
B = 2.40 by flipping the boundary condition to reach the other Falydoop sector. Looking at
several configurations the pattern seems to be the same.diib&t action difference comes from
a tiny fraction & 1%) of the eigenvalues at the low end of the spectrum. The batmavior can be
confirmed also on larger configurations and higBsrwhere computing all the eigenvalues would
be prohibitively expensive. In this case | computed onlyt pathe spectrum and checked that after
including the same small fraction of eigenvalues the adtiiffierence rapidly stabilizes. Thus it
is indeed the difference in the lowest eigenvalues betweeblyakov sectors that is responsible
for selecting the “correct” Polyakov sector by suppressfigpther sectors through the fermion
determinant.

5. Conclusions

We have seen that in the high temperature phase of theSi(2 gauge theory the density
of Dirac eigenmodes around zero strongly depends on theakmhoop. In the quenched theory
the Polyakov loofZ(2) symmetry is spontaneously broken abdyend | showed that in the < 0
sector the low Dirac mode density and as a consequence tta almdensate remain non-zero up
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to T = 2.6T, the highest temperature considered in the present studge 8p to this point the
eigenvalue density increases with the temperature, itrislikely that the condensate remains non-
zero at arbitrarily hight temperatures. | gave further exick for a non-vanishing chiral condensate
by finding good agreement for the distribution of the lowestP mode in the) = 0 topological
sector with the analytically known prediction of random rixatheory.

In the other Polyakov loop sector aboVg whereP > 0, a gap appears in the spectrum.
| showed that the gap is governed by the lowest Matsubara rdeti&gmined by the effective
boundary condition given by the Polyakov loop combined i thermal anti-periodic boundary
condition. Note that in contrast to ti8J(2) case, if the gauge group 8J(3), the Polyakov loop
cannot exactly cancel the anti-periodic boundary comdliti®herefore the gap is expected to be
present in all sectors, but it is still governed by the loviest Dirac eigenvalue, as was seen in Ref.
[6].

| also showed that contrary to common belief [8, 12], topaabcharge fluctuations are very
unlikely to explain the chiral condensate abdyesince the topological susceptibility decreases,
while the chiral condensate increases with the temperatiireould be interesting to see what
other mechanism could take over the role of topological gdan this context.

Finally | showed that by far the most important contributimnthe fermion determinant is
given by a tiny fraction of the lowest eigenvalues. Thesa@sponsible for the fact that dynamical
fermions suppress all Polyakov loop sectors except for tieevath the fewest small eigenvalues.
It might be possible to develop this simple qualitative gietinto a quantitative understanding of
how the loss of confinement aboV¥gimplies the restoration of chiral symmetry. Further work in
this direction is in progress.
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