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1. Introduction

1.1 Motivation

The experimental evidence for rapid thermalization of the dense matter created in heavy ion
collisions at RHIC has led to the interpretation of the quark gluon plasma above but close to the
transition temperature as a strongly interacting medium that has properties of an almost perfect
liquid. These experimental findings also renewed the interest in determining transport properties of
gauge theories through the calculation of correlation functions of the energy-momentum tensor on
the lattice. Recently it has been argued that close to the transition from low temperature hadronic
matter to the plasma phase of QCD bulk viscosity might play a much more important role than
shear viscosity. The singular behavior of bulk viscosity in the vicinity of a critical point has long
been known in statistical physics. In particular, at the critical point of the liquid gas transition it has
been argued that the divergence of { is strong and, in fact, almost quadratic in the inverse reduced
temperature t. The singular behavior, { ~t~?9 with a, v denoting static critical exponents of
the 3-d Ising model and z being a dynamical exponent characterizing the equilibration of density
fluctuations, goes along with a strong divergence of the relaxation time for density fluctuations,
Tr. Their ratio, {/Tr ~ t9, however, is proportional to the inverse of the specific heat and thus
vanishes slowly at the critical point. The SU(2) gauge theory with its second order deconfinement
phase transition seems to be an ideal model to explore critical behavior of dynamical properties,
e.g. transport coefficients. It also may give insight into transport properties in the vicinity of the
chiral critical point in QCD that may exist at non-zero baryon number density and also belongs to
the Ising universality class. Many of the results presented in this proceeding, have been discussed
in more detail in [1].

1.2 Energy-Momentum tensor and bulk viscosity

We indicate with @Y the energy-momentum tensor. The energy density is € = @%, and
the pressure is given by 3p = —@'". Given a zero-momentum connected correlation function at
finite temperature T: Gyy(T,T) = [d*X(X(X, T)Y(0,0))7 , its spectral function pxy is given by:
Gxy(7,T) = [dwpxy(w, T )cosh[w(T — 1/2T)|cosech(w/2T).

The bulk viscosity can be extracted from the low frequency behavior of the spectral function
of the pressure-pressure correlator:

J(T) = mlim M;”T). (1.1)

w—0
2. SU(2) thermodynamics

2.1 Differential formalism

In order to analyze correlation functions of ©@#* we need to work with a formulation of Eu-
clidean thermodynamics that allows to introduce local operators for energy density and pressure.
This is naturally achieved within the differential formalism for bulk thermodynamics [2]. We in-
troduce the Euclidean action on an anisotropic lattice as,

2N 1 2N 1
S=—= <1 — —ReTrPj; (x)) +— Z <1 - —ReTrP4j(X)> . (2.1)
90 X,i>]=1,23 N T xj=1,23 N
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Thermodynamic quantities can be obtained taking derivatives of the free energy, e.g.:

iR =TS R, )
where we have subtracted the vacuum contribution of T=0. On an isotropic lattice these are:
% = NN; {3[297% — (€5 — C7)] (Ps — P) +3[Co + Cr] (2Py — Py — Py) } (2.3)
T_p4 = NN#{ [202— (Co—c)] (Pr—Pr) —3[Co+C] 2R —Ps—P)} ., (24)
and OHH = g — 3p. In the above equations we have:
g2= 932 _ 9;2; B(g*2) = g?;; - =—-2(Co+Cr); Cor = ag—‘?r - (2.5)

Po = 3 2xi>j=123 (1~ §RETP;(x)) 5 Pr = 395 Ty j-124 (1~ yRETPy(x)) - (2.6)
2.2 Critical energy density and pressure

As check of our setup we perform a finite-size scaling analysis of € and p at the critical
point. From the scaling ansatz for the singular part of the free energy density (t = (T — T¢)/To):
fs(t,L=') = b9 fs(tb!/V,L~"h), it follows for the energy density and pressure (a =2 —dv):

p(Te) ) ( p(Te) ) -3
= raN;3, 2.7)
( TC4 N¢,Ng TC4 Nr,00 e
(T, &(T, (11—
< ( 4c)> _ ( ( 4c)> _|_a€NU(1 a)/v . (2.8)
TC N¢,Ng TC Ng 00

The critical exponents o = 0.110(1) and v = 0.6301(4) are known from the 3d Ising model.
From the critical behavior of € and p it follows that for generic combinations of the two, like € —3p
and &€ + p, will have the same volume scaling as the energy density. Note also that the value of P,
entering in the above expressions, is inessential in the analysis of finite-size scaling at fixed N,
since it can be considered as a constant. We used lattices with Ny = 4,6,8 and Ng/N; up to 24
(96° x Ny). The infinite volume critical couplings are already known: B¢ = 2.29895(10) for Ny = 4
[3], Bc = 2.4265(30) for Ny = 6 [4], and Bc = 2.5115(40) for Ny = 8 [5].

To check the universality class, using the N; = 4 lattices, where more volumes are available,
we determined the critical exponent (1 —a)/Vv by a fit to the expected functional form of the energy
density. The fit yields (1 —a)/v = 1.41(6) in agreement with (1 —a)/v = 1.412(1) for Ising 3d.
Using the known values for the critical exponents, we extracted the infinite volume critical € and
p Fig. 1. The results are summarized in Table 1. The fit was done fixing the known value of the
critical exponents and using only lattices with Ng/N; > 4. The result for &(T¢)/Tg is compatible
with the value £(T¢) /T = 0.256(23) from [2]. The result for the critical pressure is new.

3. Corrdation functions of ©OHH

The correlation function for the trace of the energy-momentum tensor can be decomposed as:

Goo(T,T) = Gee(T,T) —6Gep(T,T) +9Gpp(T,T) . (3.1
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Figure 1: Critical behavior of the energy density and pressure. The difference in their behavior is evident
from the size of the relative deviations at finite volume. Notice also the small absolute value of the pressure
at the critical point.

NT E(TC)/TC4 P(TC)/TC4

4 | 0.28724(53) | 0.02423(30)
6 | 0.2722(31) | 0.0135(8)

8 | - 0.0107(15)

Table 1: Energy density and pressure at infinite volume as extrapolated from our data, for different Ny.
Large volumes and statistics allow for an unprecedented accuracy in the determination of € and for the first
time of the pressure at the critical point.

The correlation functions involving the energy density operator Ggy(T,T) are independent of T in

the continuum limit. This is easily seen since (H (7)Y (0))1 = 2 Tr [e‘H/ TH(1)Y(0)] is independent

on time. It also follows that: Ggy(T,T) = —%(Yh— . The whole T dependence of Ggg is

thus expected to arise from the pressure-pressure correlations. On the other hand, the dominant
temperature dependence comes from the energy-energy correlator, which is proportional to the

Gee(1,T) o o
T5 T3
functions involving the energy operator and temperature derivatives of any observable is violated

specific heat: . At non-zero lattice spacing the direct relation between correlation
by cut-off effects. Nonetheless we expect that these are small in the vicinity of a second order
phase transition. One thus may expect that at least the singular behavior of correlation functions
that involve correlations with the energy operator will be independent of Euclidean time. Close to
the deconfinement transition we therefore expect that Ggg will show, for every T, a critical behavior
that coincides with that of the specific heat in a 3-dimensional Ising model:

—a
<1+Bi

with known universal exponents: a = 0.110(1), v = 0.6301(4). Like a, v also the ratio of ampli-
tudes A, /A_ = 0.54(1) and the correction to scaling exponent /v = 0.84(4) are universal.

Ge@(T,T) Cv
R E

T-T
Te

w
~ AL +J for T—TZE, (3.2)
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Figure 2: Left: Gpp for different volumes at TT = 1/2. Right: combined fit using Eq.(3.3) at T = Te.

We have calculated the correlation function Geg (T, T) close to the deconfinement transition
point of the SU(2) gauge theory. In our simulation we use lattices of size N2N; with N; = 4.
This gives us information on the correlation function at two non-zero values of Euclidean time,
i.e. at TT = 1/4 and at the midpoint TT = 1/2. Most of our simulations have been performed at
temperatures close to the phase transition where the correlation length becomes large. This required
calculations on large spatial lattices in order to eliminate finite volume effects. We used spatial
lattice sizes with aspect ratios Ng /N; varying from 8 (32 x 4 lattices) up to values as large as 32
(1283 x 4 lattices). A large number of configurations are required to reach the statistical accuracy
— O(5%) at TT = 1/2 — needed for scaling test near the critical point. We have generated
about 1-10° configurations on our smaller lattices and up to 4- 10> on the large lattices. The
algorithm used to generate the configurations uses a standard mixture of heat-bath and over-relation
updates in a typical ratio of 1:4-1:6 to keep correlations between consecutive configurations small.
Autocorrelation times in the transition region range from /(1) on the small lattices to about 40 on
the largest lattices. Numerical simulations have been performed on the BlueGene/L, BlueGene/P
at the New York Center for Computational Science (NYCCS), using a code developed specifically
for this work. A sample of our dataset for Ggg at TT = 1/2 is shown in Fig. 2 (left).

At T the singular part behavior of Gog is expected to be:

Gool(T, Te) /T8 = AGNG ™" (1+BoN; ") +Co (3.3)

where Ay, By, Cy might a priori depend on Euclidean time. This functional form gives excellent

fits for both datasets at distance TT = 1/4 and 1T = 1/2, and the fit indicates that at T the singular

contributions to Gee(T,T) are independent on the Euclidean time separation T, see Fig. 2 (right).
In the vicinity of T we expect the data to be well described by the scaling ansatz,

Goo(t,T)/T° = At %(14B.t?)+C+Dt, (3.4)

where A, By, C, D are free parameters, which again all may depend on Euclidean time. This pro-
vides very good fits in the interval T /T¢ € [0.94,1.05]. Again we find that within errors the fit pa-
rameters A, and By are independent of T; a combined fit of Gee(1/4,T)/T3 and Gee(1/2,T)/T?
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T A B. | B | ¢ | D As | Bg Co
free fit
1/4 11632.1) | -0.59(19) | -1.9(1.4) | 21.5(5.7) | -150(53) | 9.2(1.2) | -2.4(1.0) | 26.3(2.7)
172 | 16.4(2.2) | -0.76(18) | -2.2(1.5) | 3.7(3.4) -95(32) | 9.1(1.2) | -2.4(0.9) | 8.4(2.9)
combined fit
1/4 21.8(2.1) | -143(20) 26.4(1.9)
1\ 16.5(1.3) | -0.74(10) | -2.12(86) 3.8(1.9) 87(18) 9.15(73) | -2.39(59) 8.3(1.7)

Table 2: Fit parameters for fits to Gee (T, T)/T? using Eq.(3.3) and (3.4). The last row gives parameters of
combined fits to the data for TT = 1/4 and 1/2.
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Figure 3: Infinite volume Ggg near T.. Left: combined fit to the ansatz Eq.(3.4); right: the difference
G@@(1/43T) - G@@(l/Z,T)
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Figure 4: Decomposition of Ggg into different contributions as in Eq.(3.1).

with common amplitudes A, and B.. also gives a x?/dof = 1.1, see Fig. 3 (left). A summary of the
fit results can be found in Table 2. In order to eliminate the leading singular behavior from Ggg it
thus suffices to consider AGggo (T, T) = Geo(T,T) — Geo(1/2T,T). Fig. 3 (right) explicitly shows
that the singular term in Ggg gives a contribution to its spectral function which is proportional to a
delta function at zero frequency.

We finally show in Fig. 4 the temperature dependence of the different correlation functions,
Gxx(1,T), contributing to Gge. As can be seen the entire strong temperature dependence of Gog
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in the vicinity of T¢ indeed arises from Gg. All other correlators show only a weak temperature de-
pendence in the vicinity of T¢. In particular, we find that the pressure-pressure correlation function
stays finite at Tc and varies little in its vicinity and does not present any singular behavior. From
this observation we cannot conclude however that the bulk viscosity itself is not diverging. In fact
consider a simple ansatz for the form of the spectral function: ppp(w,T) = f(w,{,wy) +p-(w,T),

2
where the low-frequency part is modeled by a Breit-Wigner: f(w, {,wy) = 7—115 #wg%, with { and

wy both dependent only on T. If approaching T¢, ayy — 0 we have:
Gpp(T,T) OTZ(T)wn(T) + () + high frequency part . (3.5)

We have therefore that the product {(T)wy(T) remains finite at the critical temperature, while
the bulk viscosity itself may or may not diverge. The parameter «y represent the characteristic
frequency range over which p/w remains constant and equal to {. Assuming that @y is related to

the inverse relaxation time we have: wy(t) Ot

, where Zis a dynamical critical exponent Z~ 2 — 3.
This in turn implies that it is still possible that the bulk viscosity is rather strongly divergent at T¢

while no visible singularity is visible in the pressure-pressure correlator.

4. Conclusions

As a preliminary step, we have studied the thermodynamic properties of the SU(2) LGT at the
deconfinement transition. Specifically the critical behavior of the pressure, energy density was an-
alyzed and found in excellent agreement with the expected 3-d Ising critical behavior. An estimate
for the critical € and p in the continuum limit was given; We have shown that the correlation func-
tion of the trace of the energy-momentum tensor Ggg diverges at the critical temperature. Using
the finite size scaling at the critical temperature and the temperature scaling in the critical region,
the singular structure of Ggp was found to be consistent, with high accuracy, with that of the spe-
cific heat cy. We have shown that Ggg becomes independent of Euclidean time at the critical point,
which indicates that its spectral representation has a d-function singularity at zero frequency. The
correlators Gg¢, G¢p and Gpp were also analyzed. The singular behavior of Ggg can be traced back
in the corresponding singular behavior of Ggg, while the other two correlation functions remain
finite at the critical point. It turned out however that to extract the behavior of the bulk viscosity a
much more subtle analysis must be done: namely one must be able to control the width of the peak
of the spectral function at low frequencies but unfortunately at present no such analysis exists.
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