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Charmonium dissociation temperatures are studied in a quenched anisotropic lattice QCD with
standard plaquette gauge action and O(a) improved Wilson fermion action. Simulations are car-
ried out at temperatures in the range 0.88 Tc to 2.3 Tc. From the meson correlators, we first
subtract the contribution of constant mode, which was reported to mislead the analysis of, in par-
ticular, P wave signals. We then calculate effective masses and Bethe-Salpeter wave functions
for ground (1S, 1P) and excited states (2S, 2P) using the multi-state variational analysis. To dis-
tinguish between bound states and scattering states, we apply two methods: First, we compare
effective masses for charmonium correlation functions with finite spatial momenta under differ-
ent spatial boundary conditions. Since the scattering state energies are sensitive to the boundary
conditions, we expect finite volume effects when the charmonium dissociates. Second, we study
the Bethe-Salpeter wave function, which should become broad when the charmonium bound state
turns into a scattering state. With both methods, we have fond no clear evidences of dissociation
for the ground and exited charmonium states up to 2.3 Tc so far.
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1. Introduction

Studying heavy quarkonia properties above Tc is important to understand how quark-gluon
plasma (QGP) is formed in heavy ion collisions. In particular, dissociation of charmonia in de-
confined phase is an interesting subject because J/ψ suppression [1] is one of the most important
signals of QGP. Recently, the sequential J/ψ suppression scenario [2], in which dissociation of
heavier charmonia (χc, ψ ′) play important roles for the suppression of total J/ψ yield, has been
proposed to understand the experimental results in heavy ion collisions at SPS and RHIC.

Lattice QCD studies of charmanium spectral function using the Maximum Entropy Method
(MEM) suggested that S wave charmonia, such as ηc and J/ψ , survive up to 1.5 Tc [3, 4, 5, 6, 7, 8],
while P wave charmonia, such as χc’s, dissociate just above Tc [6, 7, 8].

Although these results look supporting the sequential J/ψ suppression scenario, there are still
some problems. First, the meson correlators receive sizable contribution of the constant mode
above Tc, especially in P wave correlators[9]. From an analysis in which the constant mode con-
tribution was properly taken into account, the thermal effects in charmonium correlators including
those of P waves turned out to be quite small up to 1.4 Tc. This is in contrast to the conclusion
of previous MEM studies on P wave charmonia. Furthermore, choice of the default model for
the spectral function is known to affect the MEM results rather sensitively. A crosscheck without
Bayesian-type analyses is needed.

Let us first discuss what we expect on the lattice when a charmonium dissociates. It should be
noted that, on a lattice with finite extent, spectral functions consist of discrete spectra only, also at
T > Tc. (These discrete spectra appear as broad peaks in approximate calculations such as MEM.)
Below Tc, we expect to have discrete peaks corresponding to ground and exited bound states. When
a charmonium bound state fully dissolves above Tc, the peak corresponding to the bound state will
vanish and other peaks corresponding c-c̄ scattering states may appear near the vanished peak.
Furthermore, we expect that the wave function for the peak will have a localized shape when the
peak corresponds to a bound state, while it will have a broad shape extending to large distances
when the peak corresponds to a scattering state.

In this paper, we report on our study of charmonium dissociation. In principle, when a high
precision data of the correlation function is available up to large distances, the constant mode can be
identified by conventional analyses too. In practice, however, with current accuracy and the range
of sensible data, we think that it is safer to explicitly subtract out the contribution of the constant
mode from the correlators. We apply the midpoint subtraction method developed in [9]. Avoiding
Bayesian-type analyses, we then adopt the multi-state variational method to extract ground and
exited state masses both in S and P waves [10]. At the same time, we calculate the Bethe-Salpeter
wave functions of these states from the spatial correlation function between c-c̄ quarks [3].

To distinguish bound states of c-c̄ quarks from their scattering states for the extracted states,
we study the spatial boundary condition dependence of the energy spectrum at finite volume[11]:
The energy of scattering states depends on its relative momentum which is quantized according to
the spatial size and boundary conditions. On the other hand the spectrum of the bound states does
not change against such exchange of boundary conditions. The Bethe-Salpeter wave functions for
a bound state will be compact, while those for scattering state will extend and will change its shape
depending on the spatial lattice size. Combining these tests, we may examine if the charmonium is
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Table 1: The parameter Ai of the smearing functions.

i 1 2 3 4 5 6
Ai 0.02 0.05 0.10 0.15 0.20 0.25

dissociated.

2. Multi-state variational analysis

The charmonia correlation matrix in Euclidian space-time is defined by

Ci j(t) ≡ ∑
~x
〈OΓ

i (~x, t)OΓ
j (~0,0)†〉. (2.1)

with Γ = γ5, γi, 1 (i = 1, 2, 3) for pseudo-scalar (Ps), vector (Ve) and scalar (Sc) channels, respec-
tively. Here {OΓ

i | i = 1, 2, · · ·Nstate} are smeared meson operators defined by

OΓ
i (~x, t) ≡ ∑

~y,~z
ωi(~y)ωi(~z)q̄(~x+~y, t)Γq(~x+~z, t), (2.2)

with Gaussian smearing functions ωi(~x)≡ exp(−Ai|~x|2). Table 1 shows our choice of the smearing
parameters Ai.

According to [9], constant mode effects are large in the deconfined phase, because the constant
mode is due to wraparound contributions of single quark propagators, which are suppressed in the
confined phase. To separate out the constant mode contribution from meson correlators, we study
midpoint subtracted correlators C(t) defined by

C(t) ≡ C(t)−C(Nt/2)

=

(
c0 +

∞

∑
k=1

ck cosh
[

mk

(
t − Nt

2

)])
−

∞

∑
k=0

ck

= 2
∞

∑
k=1

ck sinh2
[

mk

2

(
t − Nt

2

)]
. (2.3)

Here C(t) is the matrix of Ci j(t) defined in (2.1), c0 is a contribution of the constant mode and Nt

is the temporal lattice size.
We extract ground and excited states in C by solving the eigenvalue problem,

C(t)~vk = λk(t; t0)C(t0)~vk (k = 1, 2, · · · , Nstate). (2.4)

Effective masses of the diagonalized states are given by

λk(t; t0) =
sinh2

[
Meff

k
2

(
t − Nt

2

)]
sinh2

[
Meff

k
2

(
t0 − Nt

2

)] . (2.5)
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Table 2: The number of gauge configurations.

Ns = 16 Ns = 20 Ns = 32

local operator 800 800 200
derivative operator 300 300 200

Next, we define wave functions in terms of the Bethe-Salpeter (BS) amplitude:

BSi(~r, t) ≡ ∑
~x
〈q̄(~x, t)Γsnkq(~x+~r, t)OΓsrc

i (~0,0)†〉

=
∞

∑
k=0

(ψk(~r))i cosh
[

mk

(
t − Nt

2

)]
. (2.6)

Here (ψk(~r))i is the wave function for the k-th state created by the smeared source operator OΓsrc
i .

To study S waves, we adopt Γsrc = Γsnk = γ5 and γi for Ps and Ve charmonia, respectively. For Sc
charmonium in P wave, we use a derivative source Γsrc = γi(

←−
∂i −

−→
∂i ) to enhance the signal, with

Γsnk = γi.
To seprate out the constant mode, we define midpoint subtracted BS amplitudes by

BS(~r, t) ≡ BS(~r, t)−BS(~r,Nt/2). (2.7)

Finally, the diagonalized wave functions are given by

Ψk(~r;~r0) ≡
∑i BSi(~r, t)Vik

∑i BSi(~r0, t)Vik
. (2.8)

where Vik ≡ (vk)i is the i-th component of the eigen vector~vk, and ~r0 is the normalization point.

3. Numerical results

3.1 Lattice setup

We study quenched QCD with the anisotropy ξ ≡ as/at = 4. The gauge action is the standard
plaquette action with β = 6.10 and a bare anisotropy parameter γG = 3.2108. For quarks, we adopt
O(a) improved Wilson fermion action with tadpole-improved tree-level clover coefficients. Our
actions and their parameters are the same as those in [12] except for the choice of the Wilson
parameter, r = 1. The spatial lattice spacing is a−1

s = 2.030(13) GeV. Simulations are performed
on N3

s ∗Nt lattice, with Ns = 16, 20 and 32 and Nt = 32, 26, 20, 16 and 12, which correspond
to T = (Ntat)−1 = 0.88 Tc, 1.1 Tc, 1.4 Tc, 1.8 Tc and 2.3 Tc respectively. (Critical temperature Tc

corresponds to Nt ' 28.) The number of gauge configurations is shown in Table 2. We choose the
Coulomb gauge fixing to calculate the wave functions.

3.2 Effective masses

In Figure 1 we compare the ground state’s and the first excited state’s effective masses of Ve
and Sc charmonia as functions of T between different boundary conditions, i.e. periodic (PBC),
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Figure 1: The effective masses for Ve (left) and Sc (right) charmonia. Lower and upper symbols correspond
to the ground and first excited states, respectively. Red, black and blue symbols indicate the effective masses
with PBC, APBC and MBC, respectively (see text for the definition of MBC). Short bars shown near the left
end of each figure indicate the boundary condition dependence of energy spectra for the case of free quarks.

anti-periodic (APBC) and a mixed (MBC) boundary conditions. Here MBC is defined by APBC in
the x-direction combined with PBC in y and z-directions. At zero temperature, the ground state and
the first excited state of Ve channel correspond to J/ψ and ψ ′ respectively, and the ground state of
Sc channel corresponds to χc0. The effective masses are calculated by the multi-state variational
analysis with 4× 4 correlation matrix on the 203 ×Nt lattice. Here we choose smeared operators
with the parameter A3, A4, A5 and A6 of Table 1 to obtain the largest overlap with the ground state
and the first excited state.

To see a typical magnitude of the boundary-condition dependence in the effective masses, we
have studied the energy spectra for the case of free quark in a box of (2 fm)3, assuming that the
charm quark mass is 1.3 GeV. Results are shown by short bars around the left end of each plot in
Fig.1. (Only relative differences in the vertical coordinates are relevant for the bars.) For ground
state P waves, we obtain the largest gap between PBC and MBC. Therefore, we may expect a mass
shift of about 200 MeV (500 MeV) for a ground (first exited) state when the charmonium fully
dissolve.

In Fig.1, we find no evidence of mass shift with such magnitudes, for neither the ground states
nor the first excited states, up to a quite high temperature of about 2.3 Tc. The results for Ps
charmonia are similar. This suggests that these charmonia bound state persist up to about 2.3 Tc.

3.3 Wave functions

To check the bound-state characteristics of the charmonium states, we study the wave functions
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Figure 2: The wave functions for Ve (top) and Sc (bottom) charmonia at 2.3 TC. Horizontal axis is the
spatial distance in the x-direction. Left panels show the results for ground states and right panels show those
of the first excited states. Red, green and blue symbols indicate data obtained on Ns = 32, 20 and 16 lattices.
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corresponding to the mass eigenstates diagonalized by the multi-state variational analysis discussed
in the previous subsection. When a charmonium dissociates, corresponding wave function should
extend to large distances and show a sensitive dependence on the spatial size of the box. Figure
2 shows the ground state’s and the first excited state’s wave functions defined by (2.8) for Ve and
Sc charmonia at 2.3 Tc, obtained on three different spatial lattices of 323, 203 and 163. We find
that, for all charmonia we study, the spatial size dependence is small, and the wave functions
are compact. We thus find no sign of c-c̄ scattering states up to 2.3 Tc, in accordance with the
observation discussed in the previous subsection.

4. Conclusions

We investigated if charmonia dissociates in high temperature QCD on quenched anisotropic
lattices. Adopting the multi-state variational analysis to extract ground and first excited states, we
examined spatial boundary condition dependence of effective masses and investigated the shape
and spatial size dependence of wave functions for these states. From these studies, we found no
sign of scattering states nor clear evidence of dissociation, both for the ground and first exited states
of charmonia in Ps, Ve and Sc channels up to a quite high temperature of 2.3 Tc, so far.

We thank the members of the WHOT-QCD Collaboration for innumerable discussions and
suggestions. This work is in part supported by Grants-in-Aid of the Japanese Ministry of Education,
Culture, Sports, Science and Technology (Nos. 17340066 and 19549001). Numerical calculations
were performed on supercomputers at RCNP, Osaka University.
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