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At zero chemical potential, the order of the temperature-driven quark-hadron treomsitepends
on the quark massen, 4 andms. Along a critical line bounding the region of first-order i
transitions in thgmy, 4, ms) plane, this transition is second order. When the chemicairpiatl is
turned on, this critical line spans a surface, whose curgadtyt = 0 can be determined without
any sign or overlap problem. Our past measurements;ea 4 lattices suggest that the region
of quark masses for which the transition is first ordlerinkswhenu is turned on, which makes
a QCD chiral critical point at smajl/T unlikely. We present results from two complementary
methods, which can be combined to yield information on higitder terms. It turns out that the
0(u*) term reinforces the effect of the leadirtf u?) term, and there is strong evidence that the
0(u8) and @ (u®) terms do as well. We also report on simulations underwayyevtiee strange
quark is given its physical mass, and where the lattice sagdsireduced.
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Figure 1: (Leff) Schematic phase transition behaviordyff = 2+ 1 QCD for different choices of quark
massegm, 4, Ms) at 4 = 0. (Middle, Righj Critical surface swept by the chiral critical line asis turned
on. Depending on the sign of the curvatefea QCD chiral critical point is present or absent [1]. Fonhea
quarks the curvature has been determined [2] and the fidgi-oegion shrinks withu.

1. Introduction

The fundamental importance of the phase diagram of QCD, as a functiempératurd and
quark chemical potential, makes it the object of several current lattice investigations. It depends
sensitively on theu,d,s quark masses. At = 0, Fig. 1 Leff) summarizes the prevalent under-
standing of the order of the finite-temperature quark-hadron transitienfasction ofm, = my
andms. The physical point lies in the crossover region, separated from tred,dirst-order region
by a second-ordathiral critical line. While theu = 0 situation is far from settled, it can in princi-
ple be resolved by manageable increases in computer resources.;Wheénthe complex nature
of the fermion determinant makes the matter much worse. While finitesults, including the
location of the QCD critical point, have been obtained by reweightirg0 data [3], assessing the
reliability of these results is a challenge in itself [4]. It appears that the ofdyriration that can be
obtained reliably (i.e. performing thermodynamic and continuum extrapolafiopsinciple, bar-
ring an algorithmic breakthrough, is the Taylor expansion of thermodynabsiereables irfu /T)
aboutu = 0. This makes the detection of a finiteeritical point, characterized by a singularity in
the free energy, particularly difficult.

To circumvent this problem, our strategy consists of Taylor-expandingulface swept by the
chiral critical line of Fig. 1 Leff). The Taylor expansion of a generic quark magson thechiral
critical surface and the associated transition temperaliyrean be written as:

:%’)) =1+ Z ork|< T )k<nuTC>2|, (1.1)
% -1y ck( ’frc>2k. (L.2)

The sign ofc; governs the smalls behaviour, as illustrated Fig. 1. Our first results [1], for the
Nt =3 (ms=myq) theory on an 8x 4 lattice, favored a negative value for. In [5], we presented
a new numerical method to obtain thgs. Here, we combine the two methods and report on our
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progress towards determinirtg and higher Taylor coefficients)(on larger lattices;ii) for the
N; = 24 1 theory with physicairng; (iii ) for theN; = 3 theory on a finen\; = 6, lattice.

2. Extracting the u-dependence of the critical point
On the lattice, the Taylor expansion (1.2) is replaced by that of dimensiaribsssvables:
Be(amau) = B(an§,0) + Z cw (am—anf)* (au)?, (2.1)
k=1

anf(ap) = amf+ 3 ¢ (a)™. (2.2)
=1

To differentiate between crossover, second- and first-order tramsitiee monitor the Binder cu-
mulant of the quark condensate:

_ (@)
Be= o OPY =y (@w), (2.3)

when((dy)3) = 0. On the chiral critical surfac®, takes value 1.604 as dictated by tfel8ing
universality class. It can be expanded as:

Bs(am au) = 1.604+ Z by (am—anf)¥(au)? (2.4)
kf=1

with coefficients satisfying the scaling behavidwr(L) = i L)/ for largeL. Having measured
the first fewhy's by the methods of Sec. 3, we can reconstructffseeq.(2.2) as:

, danf By [9Bs\ ' bo
U7 @)z T a(an)? <aam> " by (2:5)
;o 1 dzaITf: . 1 ;2
C = gm = _Fm(b02+ b110/1+b20C1 ) . (2.6)
and finallyc; andc; as:
R 1 dT(nf(u),p)
= 2.7
%" Nang  T(m6.0) d(u/mT)? @D
o, w1 dT(mf(u),p) 1 dPTe(mf(p), p) 2.8)

7 Nfanf NZamf To(n§,0) d(u/mT)? | 2T(n,0) d[(k/niT)??2
3. Two methodsto measure B4 derivatives

B, varies steeply with the quark mass, dmgl bogin €q.(2.4) can be obtained straightforwardly
from fits of B4 measured agtt = O for different quark masses [1]. Measuring the variatioBpivith
U is another matterB, is a noisy quantity, its variation is small, and simulating at non-zero (real)
is not feasible. We have used two different, complementary methods todtyyese difficulties [5]:
1. We perform simulations at several imaginary values iy, where the sign problem is absent,
and fit our measurements Bf (1) with a truncated Taylor series juf.
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Figure 2: (Lef) Comparison of two methods of measuridBs/d(ay;)? on an 8 x 4 lattice. The broad
error band is the fit to imaginary data; the data points show the reweighted finite differenagtignts,
obtained with about 4 times fewer statisticRight) Finite-size scaling test: data obtained dre@d 12 x 4
lattices show good consistency with the I3ing universality class.

2. We perform simulations gtt = 0, reweight to small valueg = iy;, and measure the finite
difference quotientdB,/A(au)?, with
ABy 0By

lim = . 3.1
Aap2)-0D(ap)?  d(ap)?{,_o &4

A comparison between the two methods is provided Fid.etf, on an & x 4 lattice forN; = 3.

The error band is the fit to the finiyg-data (method). The data points are the finite-difference
guotients (metho@). Consistency between the two methods is observed. The second method is
clearly more efficient, since the statistics is only 1/4 of the other. This effigiesuc be traced to the
strong cancellation of statistical fluctuations when measukBgon theu = 0 and the reweighted
ensemble. Reweighting itself is done stochastically with a Gaussian-distribedtnt y, since the
reweighting factor is

def'/* Y (U ) IJ2>
def"/* B (U, )

Note the small values dfy;)? in Fig. 2 (Lefi): they guarantee a good overlap betweenjthe 0
Monte Carlo ensemble and the reweightee- i, ensemble, and small fluctuationsgn

Since our § lattice is not very larger,L ~ 3.4), we performed a finite-size scaling check by
comparing with a 12x 4 lattice. Fig. 2 Righd shows nice consistency with the expected large
volume universal behaviour, not only for tlyeaxis intercept yieldindy;, but also for the slope
yielding bp2. The result o2 > O like bp;) reinforces the finding that the transition weakens and
turns into a crossover (i.®, increases) ag is turned on (see eq. (2.4)).

Finally, we can combine the data from our two methods, since the simulations arévenped
independently and cover different rangesipf A combined fit of theam= 0.0265 data Fig. 3
shows thatBs(a;) — Bs(u = 0))/(au;)? is an alternating series i@y )? [7]. The fit gives

(3.2)

Pk, ) = — (exp(~ 1P~ /2 ()P ™ /() 2+ nf?) )

" .

Ba(aph) = Ba(k = 0) — 1.79(14) (apt)® + 108(27) (aps)* — 3438933)(ays)° + 359548876 (ap)®
(3.3)
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Figure 3: Combining the two methods: they;)? < 0.01 data come fronu = 0 reweighting, théag;)? >
0.01 from directy; # 0 simulations, all asm= 0.0265. Data at largeg; clearly fall below the& ()
contribution, indicating a negativ;sf-term. The quality of the cubic, S-shape fit favors a posiﬂ,@eterm.
After rotation to realu, all terms contribute to increasifgy, i.e. pushing the system in the crossover region.

with a x?/d.o.f. of 0.57. The large values of higher-order coefficients indicatehtigaer-order
terms become important when'T >0.5. However, after rotation to regl, they all tend tancrease
B4, pushing the system deeper in the crossover region. This only insrémeesealidity of the exotic
scenario Fig. 1Righd up to larger values oft/T. Conservatively, we trust only th€(u?) and

O(u*) terms. After continuum conversion following egs.(2.5-2.8), our finalltéeu N = 3 on

coarseN; = 4, lattices reads [6]:

””‘iig’)) ~1-333) (L) a7 (K£)'- 34

4, Towardsthe Ny = 2+ 1 continuum limit

We are currently investigating two reasons why our result eq.(3.4) chaldge qualitatively
as we consider real QCD. The sign of the curvature could change a®wesalong the critical line
away from the degeneralg = 3 case. It could also change as we take the continuum limit.

The first possibility appears unlikely given our current results Fid.eft), wherem is given
its physical value on thik = 4 critical line determined in [1] (see Fig. Righ?). Since our pions
are lighter than in nature, large lattices are required and thereby largautamngsources. This is
achieved, like for thé\s = 3,83 x 4, method2 case above, by dispatching our simulations over the
computing Grid. Many independent Monte Carlo runs are performedi all-a0, over a range
of temperatures nedl;,, using prioritized scheduling. Current statistics reach 600k thermalized
configurations.
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Figure 4: Work in progress: l(eff) Ny = 2+ 1 on a 18 x 4 lattice. The simulation point, indicated by the
leftmost arrow Righy), lies to the left of the physical point, implying that ouops are lighter than in nature.

The effect of a finer lattice is studied by simulating®186 lattices withNs = 3 degenerate
flavors. The current results, Fig. beft), give opposite signs fdmp; using a leading or subleading
order fit. While the sign of the curvatueg is consequently not clear, one can already say|that
is not large ¢/(20) or less. Thus, the critical surface is almost vertical.

In addition, another qualitative effect takes place: ihe O critical line, and thereby the whole
chiral critical surface, moves towards the originaas> 0. For instance, thdl; = 3 pion mass on
the critical line drops from 580(4)T. to 0.954(12)T; going fromN; = 4 to N; = 6 lattices [5].
The first-order region, in physical units, shrinks dramaticallaas 0. To compensate this effect
and maintain a critical point for real QCD at small chemical potenfigl$ < 1, a large positive
curvaturec; would be needed. We presently do not see it.

Finally, we note that effective models like PNJL [8] or linear sigma modelydih simple
modifications, can reproduce the qualitative features of the chiral cstictdce which we observe.
Nevertheless, let us stress again that our study concerns ontitlaé critical surface, swept by
the u = 0O chiral critical line as the chemical potential is turned on. Our results do not preclud
other phase transitions, not connected to the chiral one.
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Figure5: Work in progressi(eft) Ny = 3 on an 18 x 6 lattice. The sign of the intercepg; depends on the

fitting ansatz. Middle) As the lattice spacing is reduced, the critical surface esdewards the origin. If a
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