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1. Introduction

In the study of high temperature gauge theory in thermal equilibrium, a particuiseful
approach has turned out to be that of dimensional reduction [1]. Theesdescribes the system
via ad — 1 dimensional static effective theory built using the fact that, at high terhperahe
non-static field modes decouple quite efficiently from the dynamics of lengiesstarger than or
equal to the inverse Debye mass.

How efficiently the non-static modes decouple from the dynamics of the lonvglersgth
modes is dictated by the magnitude of the scale separation between the Delyanchaise first
non-static modes. At extremely high temperatures, where the gauge coopfiaanty is small,
the separation of scales is guaranteed as the scale associated with giatimtomodes is- 27T,
whereas the Debye masgyT is suppressed by the gauge coupling. However, it is known that there
exists at least a modest separation of these scales even in the vicinity eCthidement transition
[2], and thus the dimensionally reduced theory should give at leastlgative description of the
full theory all the way down td. or even below.

The perturbatively constructed dimensionally reduced effective thekegtrostatic QCD (or
EQCD), an effective theory for the zero Matsubara modes of gaulgis fig, has had many suc-
cesses in the high temperature regime, such as the efficient reorganfatienweak coupling
expansion of the QCD pressure [3]. This reorganization has proadeinework for extending
the expansion to the fuli® order, where the pressure acquires its first non-perturbativeilmontr
tions. In addition to this, there are several numerical simulation results fQ@LE which have
produced results matching those of the full four-dimensional theory avsarprisingly low tem-
peratures all the way down to 1.5T; [4].1

However, even with these successes, EQCD cannot accommodate thacipfT; as in
EQCD the dynamics responsible for the phase transition are missing. Beértuayatively con-
structed effective theory, EQCD describes small fluctuations aroumdfaheN; (in the quarkless
case degenerate) deconfining minima, whereas the qualitative chamde isedosely related with
the tunnelings of the Polyakov loop between the different deconfininggsh&onsequences of this
shortcoming are seen for example in the phase diagram of the effectirg tiide phase in EQCD
corresponding to the physical deconfined phase is not the global minirhtira effective theory
and simulations have to be performed in a metastable phase, discardingdoth@amntributions
of the global minima of the theory to the partition function [6].

In order for the effective theory to correctly describe the dynamicsefdtye field fluctua-
tions, it has to accommodate the full symmetry structure of the underlying th&bigh in this
case includes thepnZcenter symmetry of the Yang-Mills thedty A natural way to construct an
effective theory with the center symmetry is to use some remnant of the tenvgitsah line as a
degree of freedom instead of the small fluctuations of the temporal galdarfound a deconfining
minimum. Such a center-symmetric effective theory for SU(3) Yang-Mills the@s proposed in
[7] and further formulated on a lattice in [8]. Subsequently, in order tatera more economical

1The spatial string tension of (in 2+1 flavor QCD) seems to be describgdwell by EQCD even further, to
temperatures very nedg [5].

2Even though in the full QCD the quarks break the center symmetry soéfeping the real deconfined minimum,
the metastable minima contribute to the partition function and should be acddantear the deconfinement transition.
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platform to study the role of the center symmetry, a center-symmetric effébiaey for SU(2)
Yang-Mills was constructed and studied in [9]. The restriction for the ekegif freedom in the
theory to lie on the SW;) manifold makes it impossible to construct a super-renormalizable the-
ory with polynomial interactior’s and thus these theories are formulated using the spatizdigse
grainedtemporal Wilson line as the degree of freedom.

The main result from the simulation of the SU(2) case is that upon the inclusibe center
symmetry, the effective theory accommodates a confining second-drales fransition in the same
(3d-Ising) universality class as the full four-dimensional theory, Whiappens at an effective
theory coupling consistent with the critical coupling of the full theory.

2. Center-symmetric Lagrangian

The center-symmetric effective theory for hot SIJ( Yang-Mills theory is defined by the
action

S— [dxz(x), (2.1)
¢ = ggz{%TrF,jz—s—Tr (012D Z) +V(§f)}, (2.2)

with D; = g, —i[A, -] andFj = dA; — 9;A — [ALAj], i, ] = 1,2,3. To leading order, the fields

are the zero Matsubara modes of the four-dimensional theory wherediglthZ is the (gauge

invariantly) coarse grained temporal Wilson line

T
VBIock

Z(x) /V dPyU(x,y)Q(y)U (Y, X). (2.3)

Here the integration goes over the (somewnhat arbitréitfj —2) volume of the block antl (x,y)
is a parallel transport connecting the poirtandy at constant timg = 0, wherea€)(x) is the
ordinary temporal Wilson line winding around the Euclidean time direction

Q(x) = ﬂexp{i /OBdTAo(T,X)} 2.4)

In the case of the SU(2), thex22 coarse grained temporal Wilson line can be expressed by
using the scalar fields andl, (a= 1, 2,3) and Pauli matrices,

¥ = %{Z]l+il‘laaa}, (2.5)

and the potentid¥ ("), consisting of all other possible super-renormalizable operators ootesdr
from the fields in the effective theory respecting the symmetries of the fudlyhean be expressed
as

V(Z) = byiZ2 4 N2+ ¢ 54+ ¢ (N2)° + ca32M2, (2.6)

The parameters of the effective theory are related to those of the fultytiiyoimposing
conditions that at leading order the effective theory reduces to EQCIghttemperatures and

3A non-renormalizable effective theory of temporal Wilson lines is stuiligfi0].



Center-symmetric dimensional reduction of hot Yang-Milesory Aleksi Kurkela

that a domain wall stretching from one deconfined minimum to another has trecictension,
resulting in

by — —%rsz, (2.7)
by, = —%r2T2+0.44184L12T2, (2.8)
c1 = 0.03119942 4 0.013541%7, (2.9)
c; = 0.03119942 4+ 0.00844343%7, (2.10)
c3 = 0.06239872, (2.11)
03 = o°T, (2.12)

whereg andT are the coupling constant and temperature of the four-dimensional tteeayT
is and'(T) mass scale associated with the auxiliary scalar field introduced by the gpansieg.
This quantity, closely related to the cutoff of the effective theory, is ndupeatively matched and
the dynamics of the long wavelength modes should not be affected by iificpalue.

3. Non-perturbative phase diagram of the effective theory

Since the effective theory is super-renormalizable, the theory canrbilisted on a lattice
and the lattice-continuum relations of the parameters of the Lagrangiartsecaemputed up to
and includinge(a%) using two-loop lattice perturbation theory, making it possible to simulate the
theory on a lattice at the physidelS parameters [8, 9]. Using standard Wilson discretization and
denoting lattice quantities with hats, the lattice action corresponding to effélctoey reads

1
w=p3 [1— m {uij]] , (3.2)

- < (22(x) — £ (x+1)) (3.3)

A A A A2 ~ A~ 2 A2 A~
D132+ bof12+ 6,54+ &, (R12) +C3ZZI"I§}, (3.4)

- (i)3l

wheref is the lattice coupling constant

—

(3.5)

g

corresponding to a lattice spaciagThe lattice quantities are related to the continuM® quanti-
ties via

$=3/gs+ 0B, N=N/gs+0(BY), & =ci+0(™), (3.6)
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and
» 2.38193365
by = bl/gg - T(ZC]_ —|—C3)B
TT

+F1712 {(48c% +12c5 — 12c3) [log 1.5B + 0.08849 — 6.9537c3} + G(B™1)), 3.7)
o 0.7939779
by = bz/gg_T(loc2+c3+2)B 39

T { (80c3 + 4¢3 — 40c;) [log 1.58 + 0.08849 — 23.17895¢; — 8.66687} +oBY.
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Figure 1. A check of the universality class of the transition: The Rindumulant((Tr 2)%)/((Tr 2)?)?

is shown for various lattice volumé¢® as a function of the rescaled varialfle’'g? — 1/g2)NY/V for r? =5
(left) and 10 (right). The pseudocritical couplig is the value of the coupling, which maximizes the
susceptibility of TrZ®, andv = 0.63 as appropriate for a three-dimensional Z(2)-transitiarsatisfactory
data collapse is observed for various volumes, and the amhualue ag? is consistent with the 3d-Ising
value 1.604.

The non-perturbative phase diagram at any fixeldsely resembles that of the four-dimensional
SU(2) Yang-Mills theory: There are three phases, the two deconfimesig with Tr 27) £ 0 which
occur at small, and the remnant of the confined phase WithZ") = 0, seen at largg. The con-
fined and deconfined phases are separated by a second ordigiotrandiich belongs to the uni-
versality class of 3d-Ising model (see Fig. 1), the correct universaéigs of the four-dimensional
theory.

The phase diagram in the,g) plane is depicted in Fig. 2. AST becomes of ordef, the
phase diagram depends only mildly gras expected. Remarkably, at large values ttie critical
coupling of the effective theory is even consistent with the four-dimestbrory critical coupling
(using one-loop running to convert the critical temperature in lattice unMS@oupling).

4. Conclusions

It has been seen that in the case of SU(2) Yang-Mills theory, the accoatimoaf the £
center symmetry in the dimensionally reduced effective theory improves fiieamlity of the
effective theory near the deconfinement transition significantly. Lattice siimngashow, that upon
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Figure 2: The phase diagram of the effective theory on tife1/g?) plane. The solid blue data points are
from numerical simulations from [9], and the open red onelheen obtained from the known location of
the critical point ofA ¢ theory. The curve connecting the points has been obtaimea & polynomial fit
and has been included in the diagram to guide the eye. Thedmtal line is the critical coupling of the full
four-dimensional theory.

respecting the symmetries of the full theory, the phase diagram of theiedféltseory becomes
gualitatively similar to that of the four-dimensional theory having two decedfiphases at high
temperature and a confined phase at low temperature separated bynd eeter transition in
3d-Ising universality class. In addition to this, quantitatively the phasesitian takes place at
effective coupling consistent with the critical coupling of the four-dimeneiitimeory.

The success of implementing the center symmetry to the SU(2) case encofundiger stud-
ies. The accuracy of the effective theory near the deconfining tramsitiould be quantified for ex-
ample by studying the behavior of various screening masses and by mgdkamon-perturbative
domain wall profile. In addition to this, the effective theory can be extemalgi/e predictions of
physical situations which are otherwise difficult to study. These includexample the possibility
to study the poorly known region of the phase diagram of QCD with heaaykgwy including
center symmetry breaking operators to the Lagrangian, and extensiongeblJa work which is
already started in [11].
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