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e We present the corrections to the fermion propagator, torsgorderin the lattice spacing
a, in 1-loop perturbation theory. The fermions are describgdhe clover action and for the
gluons we use a 3-parameter family of Symanzik improvedasti Our calculation has been
carried out in a general covariant gauge. The results ardgged as a polynomial of the clover
parameteicsy, and are tabulated for 10 popular sets of the Symanzik cosftie (Plaquette,
Tree-level Symanzik, lwasaki, TILW and DBW2 actiom)We also study th@(a?) corrections
to matrix elements of fermion bilinear operators that hawe formWrw, wherel" denotes all
possible distinct products of Dirac matrices. These cdimaderms are essential ingredients for
improving, toO(a?), the matrix elements of the fermion operatossOur results are applicable
also to the case of twisted mass fermions.

A longer write-up of this work, including non-perturbatikesults, is in preparation together with
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1. Introduction

Over the years, many efforts have been maded@') improvement in lattice observables,
which in many cases is automatic by virtue of symmetries effdrmion action. According to
Symanzik’s program [2], one can improve the action by addirejevant operators. Also, in the
twisted mass formulation of QCD [3] at maximal twist, centabservables aré'(al) improved,
by symmetry considerations.

So far, in the literature there appear two kinds of pertuveagvaluations pertaining to the
fermion propagator and bilinears of the fo ¥ (I denotes all possible distinct products of
Dirac matrices). On the one hand, there are 1-loop computatior '(al) corrections, with an
arbitrary fermion mass [4, 5]. On the other hand, there ai@op-calculations at’(a°) level, for
massless fermions [6]. 1-loop computationsx{&?) corrections did not exist to date; indeed they
present some novel difficulties. In particular, extendifi(a®) calculations up ta7(al) does not
bring in any novel types of singularities. For instanceptemhich were convergent 6(a°) may
now develop an infrared (IR) logarithmic singularity at wbin 4 dimensions and the way to treat
such singularities is well known. In most of the cases, eog.nf= 0, terms which were already
IR divergent to'(a°) will not contribute tog'(at), by parity of loop integration. On the contrary,
the IR singularities encountered@ta?) are present even in 6 dimensions, making their extraction
more delicate.

2. Description of the calculation

Our calculation is performed for clover fermions, keepihg toefficientcsy as a free pa-
rameter. The action describirg; flavors of degenerate clover (SW) fermions is given in Réf. [6
We work with massless fermiongn§ = 0), which simplifies the algebraic expressions, but at the
same time requires special treatment for the IR singudgtitBy takingm, = 0, our calculation and
results are identical also for the twisted mass action irctheal limit.

For the gluon part we employ the Symanzik improved actiomlinng Wilson loops with 4
and 6 links; for the Symanzik coefficients, multiplying each Wilson loop, we choose 10 sets of
values that are widely used in numerical simulations; tla@edabulated in Ref. [1].

The Feynman diagrams that enter this computation are shoviAigi 1; diagrams 1 and 2
contribute to the fermion propagator, while diagram 3 igvaht to the bilinears’ improvement.

e N

1 2 3

Fig. 1. Diagrams contributing to the improvement of the propagétpR) and the bilinears (3).
A wavy (solid) line represents gluons (fermions). A crosaates an insertion df (Eq. (4.1)).

For the algebraic operations involved in manipulatingdatFeynman diagrams, we make use
of our symbolic package in Mathematica. Next, we briefly déscthe required steps:
e The evaluation of each diagram starts with the contractioorey vertices, which is performed
automatically once the vertices and the topology of therdiagare specified. The outcome of the
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contraction is a preliminary expression for the diagramarrgtudy; there follow simplifications
of the color dependence, Dirac matrices and tensor stegtWe also fully exploit symmetries of
the theory to limit the proliferation of the algebraic exgs®ns.

e The above simplifications are followed by the extractionlbfumctional dependencies on the ex-
ternal momentunp (divergent, convergent terms) and the lattice spacingéef order?, al, &2).
The convergent terms can be treated by naive Taylor expamsi@p to the desired order. On the
contrary, the isolation of the logarithms and non-Loremtzariant terms is achieved as described
below. As a first task we want to reduce the number of infraiieerdent integrals to a minimal set.
To do this, we uséteratively two kinds of subtractions for the propagator, so that alintively
divergent integrals (initially depending on the fermiordahe Symanzik propagator) are expressed
in terms of the Wilson propagator. The subtraction for theogl propagator reads

D(d) = Dpiag(d) + Dpiag(q) (Dyzq(d) —D~(q)) D(q) (2.1)
Dy (@ = 2 @Mk g 2 ¥ @-y e 2.2
G2 (62) a

whereD*V is the 4x 4 Symanzik propagator. The matr(R)plaq( q) —D7Y(q)), whichiso(q*), is
independent of the gauge paramefgrand can be obtained in closed form, as a polynomig}in ~

e The most laborious part is the computation of the divergermbs, which is performed in a nonin-
teger number of dimensio3 > 4. Ultraviolet divergences are explicitly isolated a la Zirmann
and evaluated as in the continuum. The remainder®adenensional, parameter-free, zero mo-
mentum lattice integrals which can be recast in terms of @dssctions, and finally expressed
as sums of a pole part plus numerical constants. We andlytimaaluated an extensive basis of
superficially divergent loop integrals, which is preseniedRef. [1]. A few of these integrals are
very demanding, because they must be evaluated to two fustders ina, beyond the order at
which an IR divergence initially sets in. As a consequertoeiy evaluation requires going i > 6
dimensions, with due care to take into account all possibleces of¢(a?) corrections. These
integrals form a sufficient basis for all integrals which eapear in any’(a?) 1-loop calculation.

¢ The required numerical integrations over loop momenta areopmed by highly optimized For-
tran programs; these are generated by our Mathematicaytatt’ routine. Each integral is ex-
pressed as a sum over the discrete Brillouin zone of finiteés, with varying sizé (L* < 128,
and evaluated for all values of the Symanzik coefficientsciviave considered.

e The last part of the evaluation is the extrapolation of thenarical results to infinite lattice
size. This procedure entails a systematic error, whichliably estimated, using a sophisticated
inference technique; for 1-loop quantities we expect difsaal error smaller than 16.

3. Correction to the fermion propagator

The 1-loop corrections to the fermion propagator arise ftbeevaluation of diagrams 1 and
2 in Fig. 1. Capitani et al. [5] have calculated the first ongems in the lattice spacing for massive
Wilson fermions and the Plaquette action for gluons. Weiedrout this calculation beyond the
first order correction, taking into account all terms ugitta?) and considering a general Symanzik
improved gluon action. Our results, &(a'), are in perfect agreement with those of Ref. [5].
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The following equation is the total expression for the imeepropagatos ! as a function of
the external momenturp, the coupling constardg, the number of colord\, the clover coefficient
csw, and the gauge parameter The quantitieg (") appearing in our results f@ ! are numerical
coefficients depending on the Symanzik parameters, cédclifar each action we have considered;
they are tabulated in Ref. [1]. In Eq. (3.2) and Egs. (4.58)#ve present the values ef-1) for
the Plaquette and Iwasaki actions (top and bottom numbespectively); only 5 decimal points
are shown, due to lack of space

Sip) = gt 2 p & ;213 i g — 47920 +£©? gy 4 €@ >C%W+)\In(a2p2)}
— ap?§ { —3.86388 + £ cgyy+ 3 &, — ;(3—2)\ — 3Csw) In(azpz)}

— 2P F [5(2’1) +0.50700 + £2? ey + £33 &+ <1g; ;écz - %) In(a? pZ)]

~ a2 p? e 24 + 151608\ + 2% can+ 229 G,

5 ¢ C 1/3 2 2.2
+<240+2+60 4<2)\+CSW+CSW>>In(ap)]

2 Zupfuz[ 3 G 5)\}

80 10 48

We defineg? = g°Cr /(16m2), Cr = (N>~ 1)/(2N),Co =1 — C; — cgand i = 5, . pj ; the spe-
cific valuesA = 1(A = 0) correspond to the Feynman (Landau) gauge. We observe thét(tt)
logarithms are independent of the Symanzik coefficientsn the contrary’(a?) logarithms have
a mild dependence ar).

(3.1)

g(01) _ 1664441  _(02) _ -224887  (03) _ -139727  (11) _ 1282693
8.11657 ~1.60101° ~0.97321 7.40724
g(12) _ ~520234 (13 _ 008173  .(21) _ -A74536  _(22) _ 002029
388884 —0.06103 —320180 0.08250
(23) _ 010349 (24) _ —150481 (25) _ 070358 (26) _ 053432
57 = ooat92 €77 = _ge2022 €77 = osss8mr €7 = 041846 (3.2)

4. Improved operators

In the context of this work we also compute the contributiopso &'(a?) to the forward matrix
elements of local fermion operators that have the féti¥. I corresponds to the following set of
products of the Dirac matrices

I =1(scalaj, y® (pseudoscalar vy, (vecto, y°y, (axial), %f[y“,yv] (tensoy  (4.1)

The ¢(a?) correction terms are derived from the evaluation of diag@shown in Fig. 1. One
may improve the local bilinears by the addition of highemdnsion operators

. n i
(0)™ =Wrwagy KPQWragy K9Qw (4.2)
i= i=
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where the first term is the unimproved operator &#@Ql W (qJQiqu) are operators with the same
symmetries as the original ones, but with dimension higlyeorie (two) units. To achieve (a?)
improvement, we must choog andk!” appropriately, in order to cancel out afi(al, a2) contri-
butions in matrix elements.

In the rest of this section we show our results for the 1-loopeactions to the amputated 2-
point Green’s function (diagram 3 of Fig. 1), at momentpmA" (p) = (W (¥I'¥) ¢>‘z‘$p. The
values of all the Symanzik dependent coefficiestsgp, &v, €a, €7, With their systematic errors,
can be found in Ref. [1]. We begin with th&(a?) corrected expressions faxS(p) and AP(p);

including the tree-level term, we obtain

AS(p) = 1+ e’ +5.79201 + &% cow -+ 689 By~ In(@2p?) (3+ )

+ aigg [ —3.935761 + £5? cow+ e8P B+ (g +A +gcsw> In(azpz)]

+ a2 p? gz[ D 227350 + P cow+ £Y G+ (—% + j)\ + 305W> In(azpz)}

A PTER
AP(p) = PP+ y°&F [ 60 +579201A + 7 By~ In(ep?) (3+ 1) |

+ a p2y5g2[ —0.83810 + £ >csw+< 411 i)\)ln( 2p2)]

B (205

AP (p) is free of & (al) terms and all contributions linear iy vanish. The values of the numerical
coefficientses andep for the Wilson and Iwasaki gluon action are

8(071) __ 0.30800 8( 2) _ 998678 8( 3 _ 001689 8(1 1) 065863 8( 2) _ —4.20299

S 0.74092 ©S —  6.90168 °S — —0.2933% °©S — —0.05097 °©S — _—2.88571
5(1.3) _ —1.28605 s( 1) 260041 s( 2) _ —4.15080 E( 3) 017641 s( 1) 995103

S — —0.90950" ¢S — 202123 °©S — —3.234600 ©S — 0234500 ©P — 655611
(02) 343328 .(21) _ 084420 .(22) _ —0.25823

& = o25383 &P = 06699l P = _030221 (4.5)

The ¢(a?) corrected expressions féx' (p), A%(p) and AT (p) are very complicated, in the
sense that there is a variety of momentum contributions hecetore many Symanzik dependent
coefficients, as can be seen from Egs. (4.6) - (4.7). In fagtrelegate our result fok" (p) to the
longer write up [1]. We also list the coefficientds andea for the Wilson and lwasaki actions in
Eq. (4.8).
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A (p)

— Vu+t % |~ 22| + v @[ &*Y + 479201 + &P cow+ & By~ A In(a?p?)|

2) (1,3)

+ aipy gz{s\(,l’” —0.93576) + &, cow+ &% B+ (—3+ A + 3csw) In(azpz)}

2 2 21, A (22 (23) 2 53 11 2 2
+ayupy9 [Sv + 8 +& " 'Cswt & Cowt < 120—|— 10C2 In(a“p )]

+ &%y, pP° [8\(/2’4)

11 o C A 5 Ew\ 22
*(%‘E‘@*g‘TzCSW*T @)

—0.81104 + 8% cow+&7% By

+ a2 ppu | e +02436M + 57 cow + 879 Ay

149 C A Csw C%W )
+<_H)_°1_%+Z+T+T In(@p?)

2 pr?>~2[3 C 5] 2¢3pp~2[ 101 11 /\}

+ a Yu p2 %+E+4_8A +a p2 —E+1—5C2+§
3 4
2PPL o 1 2 A7 oPPu3pPpor 3 G 5
ra | gt gCet g +a ()2 205 22 (4.6)
V5¢pu ~2
= VYt 2 g [—2/\]
+ Vv [e,&oﬂ) +4.79201A + £ cow+ €07 Gy — A In (@2 p2)]
T aiy® (yu P py) 6| en — 2935764 + 4 cow + 6% -+ A In(a?p?) |
2 22l 21 A (22 (23) 2 58 1 22
+ a VSVH PL9 {SA + 8+£A Csw+ &x CSW—|—< 120+ 10C2 In(a“p )]
+ &y yu P2 [e,(f"") —1.746524 + 7% cow+ €79 G
+ _gg_ﬂ_%_i_?)\_i_lc _ﬁv In(a2 2)}
240 2 60 8 " 12°WT 4 P
+ a?y’ppu §° [s}f’?) +1.11462 + £2¥ cow+ £2Y Ay
91 C, 3, 5 Cw 2 2
+<m‘°l‘§rz“é°sw—7 In(e?s?)|
4
2 20Pp o3 C 5 2 5P Pu .y 101 11 A
TEY TS [80+10+48A]+a - [ 60+15C2+3]
3 4
2 5PPLor 1 2 A1, 25PPudpPp or 3 C 5
Ay o g |5t ECet )+ S T 2w @D

6
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5(071) 397338 _(02 _ 249670 _(03) _  0.85410 5(171) 271098 _(12) _ 184814
vV = 298283 &V T _17242 & = 063680 &V 0 — 090743 & = _080352
(13) _ -0.39053 (21) _ 155410 .(22) _ 0.32907 .(23) _ -0.00602 .(24) _  0.25007
& = _osse01 &V 0 = 145730 & = 008590 & 0 = 00793y &V — _026685
5(2.5) 088599 _(26) _ —030036 (27) _  1.27888 5(2.8) _ 027776 (29 _ -0.35475
v = o712790 & = _ozs079 &V 0 = o762 &V = 020755 & = _018427
8(071) _ —0.84813 8(0,2) 249670 8(0,3) __ —0.85410 8(171) _ 134275 8(1,2) _ —1.71809
A T 007524 ©A T 172542 ©A T _0.63680 A T~ 026850 “A  — —1.23802
5(1.3) _0.13018 8(2,1) _0.38791 8(2,2) 185117 5(2.3) _ —0.09309 8(2,4) 163504
A T 011867 A T 005918 €A — 1570700 ®A T -01393% A T~ 0.68458
8(275) _ —1.59946 5(2’6> __ 0.33390 5(2’7> 041759 8(278) __ 0.39585 8(2,9) _ 031972
A T —124801 °A T 026827 ¢A T 105772 ©A T 018672 °A T 0.17429
(4.8)

5. Conclusions

Our results show clearly that(a?) effects are quite pronounced in the Green’s functions we
have considered. The&(a?) contributions which we have calculated can be directly usestder
to construct improved operators, bringing the chiral limithin reach. Possible follow-ups to the
present work include:

e Extending to the case of nonzero renormalized mass.

¢ Improvement of higher-dimension bilinear operators, sagthose involved in hadronic form
factors, and of 4-fermi operators.

A comparison with non-perturbative estimates of matrixeats, coming from numerical simula-
tions, will be presented in Ref. [1].
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