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1. Introduction and Background

The ns =5 QCD coupling in the MS scheme at the conventionally defined reference scale
U = Mz represents one of the fundamental parameters of the Standard Model. The central value
of the 2008 PDG assessment [f], as(Mz) = 0.1176(20), remains strongly influenced by the high-
precision lattice result, as(Mz) = 0.1170(12), obtained in Ref. [J] from an analysis of UV-sensitive
lattice observables using the MILC a ~ 0.18,0.12, and 0.09 fm ensembles. In the last year, a
number of independent determinations have appeared, from a number of different sources, yielding
typically somewhat higher values. Specifically,

e updates of the global EW fit, taking into account the new 5-loop result for the dimension 0
OPE contributions [f], yield as(Mz) = 0.1191(27) [, Bl

e the most recent hadronic T decay determinations [f, [f]], whose ranges are encompassed by
results of Ref. [[7], yield as(Mz) = 0.1187(16) (~ 20 lower than the earlier result of Ref. [f]],
for the reasons discussed in Refs. [, [);

e the determination based on 2 to 10.6 GeV Rnag Values yields as(Mz) = 0.1190 (3%, [B];

e an update of the determination from W yields as(Mz) = 0.1190 (") [A;

e recent determinations, as(Mz) = 0.1198(32) [[L0], 0.1182(45) [fL1]], 0.1240(33) [[LJ] and
0.1172(22) [[L3], using shape observables in DIS and e*e~ — hadrons, if averaged naively,
yield a combined result as(Mz) = 0.1193(15).

In view of these results, and, in addition, the availability of the new MILC ensembles with a~ 0.15
and 0.06 fm, it is timely to revisit the earlier lattice analysis. We do so by focussing on three
observables, log(Wiz), log(Wi2) and log(Wio/uf) which can be convincingly argued to receive
only small non-perturbative contributions at the scales of the lattices employed in our analysis. In
what follows, we first briefly outline the basics of the method employed in Ref. [3], then describe
our implementation of this approach, and finally present our results. We also discuss briefly the
differences (and complementarity) between our implementation and that of the other recent similar,
but not identical, reanalysis by HPQCD [fL4]. An expanded discussion of the work reported here
may be found in Ref. [L5].

The authors of Ref. [J] extracted as(Mz) by studying a large number of UV-sensitive lattice
observables, including the three, log(Wi1), log(Wi2) and log(Wiz/u§) on which we focus below.
The perturbative expansion for such an observable, O, is written in the form

=3 dia (QN = Did (Q) > o 6 (QuM (L.1)
—1 =0

with cék) = 1, Qx = dx/a the Brodsky-Lepage-Mackenzie (BLM) scale for the observable Oy, and
@ any coupling having the same expansion to O(a2) (with as the usual MS coupling) as the usual
heavy quark potential coupling, denoted a\? below. The coefficients cﬁk%S (equivalently, Dk,c(lk),

and c(zk)) have been computed in 3-loop lattice perturbation theory [[L6]] for a number of such observ-
ables and, with the corresponding dy, tabulated in Refs. [B, [[4, [[G]. They are common for all such
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couplings a. The couplings & also share common values for the first three 8 function coefficients,
Bo =9/4, [3’1 =4 and 32 — 33.969, where in our normalization y?da(p)/du? = — Zn:OBnén(H)
with &= & /1. When the expansion of & is further specified to O(cf), B is also determined from
the known values of the 4-loop MS 8 function coefficients, , ---, Bz [L4]. The & (Qx) appearing
in Eq. (L.1) are determined by the value at a single reference scale, the reference scale value serv-
ing as a fit parameter for the analysis. It is, of course, important to remove any non-perturbative
contributions to the observable in question in order to make use of Eq. ([.Z). The reliability of the
analysis will be greatest when such non-perturbative subtractions are small.

Somewhat different choices for & are made in the two recent reanalyses. We denote our choice

by ar, and that of Ref. [[[4] by ay. The relation between o} and as, to O(a2), is of the form [[§]

ol () = as(p?) [1+ ke (U?/ P as(pU?) + Ko (U2 /@) as(1?)] (1.2)

with the expressions for k12(x) given in Ref. [[8]. The n; = 3 version of the RHS of Eq. (L.2),
with p? = g2, defines our ar(g?). Numerically,

ar(1?) = as(u?) [140.5570as(pu?) +1.702a2(u?)] . (1.3)

This exact (by definition) relation is used to run or between different scales using the intermediate
a5 coupling, whose running can be reliably performed at 4-loops over the range of scales relevant
to the observables considered. The HPQCD coupling, av, is defined as follows. Beginning with
Eq. (L.J), one takes the RHS, with 2 = e~%3¢?, to define an intermediate coupling, o, (g?). This
coupling has a B function, B, with known values of 3),---, 5, but also non-zero, but unknown,
higher order coefficients, 51.5,.-» whose values depend on the presently unknown Bs5s.... The final
HPQCD coupling, av, is obtained from ay, by adding terms of O(a?) and higher with coefficients
chosen in such a way as to make B}( = Bg’ =---=0. Since B45,... are not known, the values of the
coefficients needed to implement these constraints are also not known.

Using the expansion parameter o, no perturbative uncertainty is encountered in converting
the fitted reference scale ar value to the equivalent reference scale MS result. This is not true
for the HPQCD parameter av. Higher order perturbative uncertainties, however, do remain in our
analysis. To see where these occur, and to understand the motivation for the alternate HPQCD
choice, let us define ap = a(Qp), where Qg is the maximum of the BLM scales (corresponding
to the finest lattice) for the observable in question. We next expand the couplings at lower BLM
scales (coarser lattices) for the same observable, in the standard manner as a power series in a g,

a(Qv) = él P (t) ag (1.4)

where tx = log (Qﬁ/Qg), and the pn(t) are polynomials in t with coefficients determined by those
of B. Substituting this representation into Eq. (fL.1)), one obtains the following expression, where

we replace any occurences of [, - - -, B with their known numerical values and display only those

terms involving one or more of ﬁg and the unknown quantities ﬁ4,[§5, ey c(3k), E.rk),---:

0 . )
o=t (cf++) +af (<! —0.010273 — 2.865c tc+ ) + af (e — 0.00327
k
35814t + [0.02573t2 — 0.02053ct Ba[5.129t7 — 1.621t,Jci + - - )
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+ag (cg” — 0.0010403st, + [0.009361t2 — 0.006536¢,t,| s

+[—0.04213t2 + (0.01664 + 0.06617c,)t2 — 0.03080¢, ] B3 — 4.297¢ty
+[7.694t2 — 2.026tc + [—7.347t3 + 6.386t2 — 4.382 ¢ + - - ) T (1.5)

Running the MScoupling numerically using the 4-loop-truncated 3 function is equivalent to keep-
ing terms involving Bo, - - -, B3 to all orders, and setting 84 = 35 = --- = 0. The neglect of 34,35 -
also alters [3’4,[§5,--., and hence produces a “distortion” of the true tx-dependence, beginning at
O(af). Since it is the scale-dependence of Oy which allows one to fit the unknown coefficients
cgkfl as well as ayg, it follows that the 4-loop truncation forces compensating changes in at least

the coefficients (flk% A shift in the values of cf.r"), however, leads also to a shift in the O(ag)

coefficient which, in general, will necessitate a compensating shift in §k> as well. This in turn will
necessitate a shift in ap. Since the MS 8 function is known only to 4-loop order, such truncated-
running effects are unavoidable at some level. From Eq. ([L.5)), however, it follows that their size can
be minimized by taking Qg as large as possible (achieved by working with the observable with the
highest intrinsic BLM scale) and keeping tx from becoming too large (achieved by restricting one’s
attention, if possible, to a subset of finer lattices). Note that, by defining oy in such a way that the
4-loop-truncated B function BV is exact, the HPQCD expansion parameter choice, by definition,
avoids these truncated-running problems. The price paid is the unknown relation between oy, and
as beyond O(a). The impact of this uncertainty on as(Mz) cannot be controlled, either through
the choice of observable or through the restriction to a subset of finer lattices.

From the discussion above we see that the two different coupling choices lead to complemen-
tary analyses. If the impact of the neglect of higher order perturbative corrections in both cases is
small, the two approaches should give compatible results for analyses based on the same observ-
ables, providing a form of mutual cross-check. Good agreement is, indeed, found (see Ref. [[L5]
for details).

2. Results

We now turn to the results of our analysis. We employ data on our observables from the MILC
a~ 0.06, 0.09, 0.12, 0.15 and 0.18 fm ensembles [[9]. To minimize incompletely incorporated
higher order perturbative contributions, we perform our main analysis using the three finest lattices,
expanding to full 5-fold fits to test the stability of our solutions. The physical scales for the various
ensembles are determined using the measured values of rq/a and the recent MILC assessment,
r, = 0.318(7) [Rq]. The uncertainties on the extracted as values associated with those on r;/a and
r, are added linearly to arrive at an “overall scale uncertainty” contribution to the total error.

Quark-mass-dependent non-perturbative contributions are found, using the data for different
mass combinations am, /am, to be very linear in 2am;, + ams, allowing these contributions to be fit-
ted and removed with good reliability. Because of details of the analysis not discussed here, the un-
certainty in this subtraction appears as part of “the overall scale uncertainty” discussed above [[L5].

Mass-independent non-perturbative contributions are assumed dominated by the D = 4 gluon
condensate contribution. The corresponding leading order contribution to the m x n Wilson loop
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Wi, denoted by 8gWin, is known from Ref. [21],
—7"21”2 24,95 ~2

As central input for the condensate we employ the result of the updated charmonium sum rule
analysis of Ref. [27], (£G?) = (0.009-:0.007) GeV*. Since the error is already close to 100%, we
take the difference between results obtained with and without the resulting subtraction as a measure
of the associated uncertainty. The neglect of mass-independent non-perturbative contributions with
D > 4, for which no pre-existing constraints are available, should be safe so long as the estimated
D = 4 gluon condensate subtraction is small.

The shifts associated with the central gluon condensate subtraction grow with increasing lat-
tice spacing a and, for the observables considered here, are (i) —0.01%, —0.02% and —0.08%
for a~ 0.06 fm, (ii) —0.1%, —0.4% and —1.3% for a ~ 0.12 fm, and (iii) —0.5%, —1.8% and
—5.6% for a ~ 0.18 fm, where in each case the values quoted correspond to the observables
log(Wi1), log(Wi2) and Iog(le/ug), in that order. The corrections, as claimed, are small, making
the mass-independent non-perturbative subtraction safe for both the central 3-fold and extended 5-
fold fits [28]. The subtractions are particularly small for the three finest lattices and for the plaquette
observable, log(Wi3).

In line with the results of Ref. [B], we find that, even for the highest-scale observables and three
finest lattices, the known terms in the perturbative expansion of the Q are insufficient to provide
a description of the observed scale-dependence. When cék) is added to the fit, however, very good
fit qualities are found, with x°/dof < 1 (very significantly so for the 3-fold fits). It follows that,
with our current errors, it is not possible to sensibly fit additional coefficients in the expansions of
the O. This raises concerns about possible associated truncation uncertainties. Since the relative
weight of higher order relative to lower order terms grows with decreasing scale, the comparison
of the results of the 3-fold and 5-fold fits provides one handle on such a truncation uncertainty.
If higher order terms which have been neglected are in fact not negligible, then the growth with
decreasing scale of the resulting fractional error should show up as an instability in the values of the
parameters extracted using the different fits. We see no signs for such an instability within the errors
of our fits, but nonetheless include a component equal to the difference of central values obtained
from the 3-fold and 5-fold fits as part of our error estimate. This “stability component” is added in
quadrature with the overall scale uncertainty, the gluon condensate subtraction uncertainty, and the
small uncertainty associated with varying the c(zk) (and, if relevant, c(lk)) within the errors in their
numerical evaluations to arrive at the total error on our results.

After converting our result for the reference scale ny = 3 at coupling to the corresponding
ns = 3 MSvalue, we run the result to Mz using the usual self-consistent combination of 4-loop
running and 3-loop matching [P4], taking the flavor thresholds to lie at rm¢(m) and rmy(my), with
r varying between 1 and 3, mg(m;) = 1.286 +0.013 GeV and my(my,) = 4.164 +0.025 GeV [P5].
The evolution to Mz produces an additional 0.0003 uncertainty on as(Mz) [A].

Our results for as(Mz), combining all errors as indicated above, are 0.1192(11) from the fit
based on log(Wi1), and 0.1193(11) from those based on log(Wi2) and log(Wiz/uS). The consis-
tency represents an improvement over that of the corresponding results quoted in Ref. [B]. In line
with the arguments above, we believe the most reliable analysis to be that obtained using the three
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Figure 1: Contributions to the errors on as(Mz). Shown are the results for as(Mz) obtained using (i) the
3-fold fit strategy, with central values for all input (the “central” case), (ii) the alternate 5-fold fit strategy,
still with central values for all input, and (iii) the 3-fold fit strategy, with, one at a time, each of the input
quantities shifted from its central values by 10, retaining central values for the remaining inputs. The error
bars shown in each such case are those associated with the uncertainties in r1/a for the various ensembles.

finest lattices, and the observable, log(\W31), having both the highest intrinsic scale and smallest
gluon condensate subtractions. Our final determination, based on this case, is thus

as(Mz) = 0.1192(11) . (2.2)

The dominant contribution, 0.0009, to the total error is that associated with the overall scale uncer-
tainty. A graphical depiction of the various components of the error is given in Figure f] where, for
clarity, only one-sided errors are shown. The results are in excellent agreement with those of the
independent determinations mentioned above, whose average is shown in the figure by the shaded
band.
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