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1. Motivation

A problem one has often to face when handling lattice ressilizking the continuum limit.

A viable way of reducing the impact of lattice artifacts (lgmovingsome of them) is given
by the Symanzik improvement programme [1] which, as is \wetwn, has allowed to remove
0'(a) artifacts in unquenched simulations. The irrelevant texyioet added to the lattice action was
determined by Sheikoleslami and Wohlert [2] and contaiasstircalledtsyy coefficient which can
be expanded perturbatively in even powers of the bare auygy.

While the zero- and one-loop coefficients of this expansiaveralready been computed for diffe-
rent lattice actions [3, 4] (see also references therdig) two-loop contribution is still unknown:
within the Wilson formulation of Lattice QCD (LQCD), we adhs its determination using NSPT,
a tool that allows for perturbative calculation in lattieegularized quantum field theories.

In the second part, we discuss a technical issue of NSPTahelated to the discretization of
the Langevin equation that governs the evolution of theesystour target is to obtain high-order
integrators, aiming at reducing the computer-time at fixazlieacy.

2. Wilson formulation of LQCD and improvement: some notation

The Wilson actiorSy of LQCD can be decomposed into gau§e)(and fermionic &) parts
with?,

S = BZ (1—T—[uw<n>+UJv<n>]>, (2.1)
H>v

wherep = 2N¢/g3, N; is the number of colours),,, (n) is the lattice plaquette and,

S = Z ‘ﬁab(n)///nab, mﬁc[U]Wﬁc(m), (2.2)

na,b
m,f3,c

with
1
%[U]nabmﬂc = _EZ —Yu aBUu( )bc5n+ﬁ7m+(r+VH)O{BUJ(m)bcaﬂ—ﬁl,m +
o

+ (Mo +4r) 81m yg Goc - (2.3)

In eq. (2.3)r is the Wilson parameter (which we will set to 1) whi& is the bare mass.
The Sheikoleslami-Wohlert irrelevant contributioBsy) to be added to the Wilson action is
given by,

Ssw= _CSWZ P(n Guvlfuv(n)'-p(n), (2.4)

n,’mv

whereay, = i/2[yy, Y] while Fy,, (n) reads,

1in the equations of this and the subsequent section it isratatel that all dimensionful quantities have been
rescaled with powers of the lattice spacentp be dimensionless (some of them carry an extra "hat" to esipé this).

2In the following equations, spin and colour subscripts amgpsessed to ease the notation: they can obviously be
restored as in eq. (2.3).
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'fuv( n) = = (Quv(n) — Quu(n)), (2.5)

OOII—‘

with Qv (n) being the clover termQyy(n) =Uyv(n) +U_y y(n)+Uy () +U_py —y(n).
As already anticipated, the coefficiaryy appearing in eg. (2.4) can be decomposed as
Cow = Co+ C5nd + Cendb + (e - (2.6)
Wherecg\,)v is the target of our computation.

(2)
3. How to measure cgy,
A suitable observable to determing,)v is given by the pion propagafyr

Goc(N=m) = — % (Wab(N)(¥5)apWpb(N) Poc (M) (¥5) ¢ Wee(M) ) =

a,p3,0,¢€
- a, [;6, e((VS)a[; [M _l} nBb, méc(ws)(SE [M _l} mec,nab’~
* ~ . 2
S X I W R TESS | L U T2

whereM is the fermionic operator obtained by adding together e2)2) @nd (2.4): for details
about its inversion, see [5]. After switching to momenturacpand defining the dimensionless
quantitiesp,, = pya and = Su f)f, (being thep,'s the lattice momentum components), one can
invert the propagator to obtain tiiefunction which can be decomposed as,

[ (P, Mer,Go) = P2+ ME + MZ(P) — (P, e, Go) (3.2)

whereMW(f)) is the irrelevant Wilson masl, the (perturbative) pion rest mass ail(cﬁ, Mer, Qo)
the self-energy withng the critical mass defined ag, = i(o, Mer,go). Since we want to develop
a mass-independent scheme, we will both\dgequal to zero and subtract the proper mass coun-
terterms to keep fermions massless.
Given that we are eventually interested in a perturbatiygegeh, we can expar?i( P, Mer, o)
as a series ig3, i.e. 5(P,Mer, 0o) = Zk K (B, her)g2¥, and decompose a generic coefficient
5 (p, ;) by means ohypercubic invariantss,

509(p.er) = 0 () + o (M) 3 B2 + o () S B+ - (3.3)
)

9]

A possible approach to determiméz\zv would consist of expanding the pion and quark self
energie$ in a combined way: one could talcé?,)v: 1 to obtaink. to &(B~1), then take this value
to tunecg,)v to make the pion mass vanish; next, one revisits the quaragetor to determing;
to 0(B~?)and so on tillcgzv)v is determined!

3The subscript "U" means that the corresponding averageohss performed on gauge configurations only.
4Formulae similar to egs. (3.2)—(3.3) hold also for the qundpagator though the Dirac structure is more involved.
Sltis clear that, requiring the pion to be massless, alsomnspiettlng\/lO equal to zero.
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An alternative strategy could be the following: recall tBagf, was introduced to remove
0 (a) artifacts and the pion propagator contains the product ofgquark propagators. One should
be able to establish a correspondance between terms pom@bitba in the operatoi ! and the
ones proportional te? in thel -function, namelyxék). If one now tunes(sc\),)vandc(slv)\,to their known
values and observes that, corresponding&,) and aéz) vanish, one can fixg‘\',)v by requiringa§3)

to be zero. This approach is maybe less rigorous but nomsthshould be worth studying.

4. Numerical setup

The method of our choice is NSPT. It is relatedtmchastic Quantizatiof] which consists
of introducing an extra coordinate, a stochastic timmgether with an evolution equation of the
Langevin type,

do(xt) IS¢
Framiaie 20 +n(xt), 4.2)

where in this example(x,t) is a scalar field while (x,t) is a Gaussian noise.
Starting from this, the usual Feynman-Gibbs integratiantmarecovered by noise-averaging as

t—oo t

X H 1 t / !
Z’lf[D(p]O[(p(x)]e*SW( )l = lim _/o o’ (Ol (x.t')]),, - (4.2)
For SU(3) lattice variables the Langevin equation has to be modifita[Bi,
AU(n,) = —iTA(Th, AU+ 1 (0,1) ) Uy (1) (4.3)

in order to obtain an evolution of the variables within thewgy: hereTA = A*/2 are Gell-Mann
matrices Whilerlﬁ(n,t) are again Gaussian noise components.
The missing ingredient, i.e. Perturbation Theory, is idtroed by expanding tHa’s a$,

U (x,t) — Zﬁguﬁk)(x,t) : (4.4)

When plugging this into the Langevin equation, this resuits system of coupled differential
equations that can be solved numerically via a discretimatif the stochastic time= N1, where
T is atime step.

In practice, the system is evolved for different valueg ahen we average over each therma-
lized signal to realize the limit — o« of eq. (4.2). Finally we extrapolate into thet = 0 limit
of the desired observable: this extrapolation is needeckdite correct Boltzmann equilibrium
distribution is recovered only for continuous t

5. High-order integratorsfor NSPT

The csw-Ssimulations are an ongoing project such that the numerasllts presented here
refer to improvements of the NSPT algorithm.

6The expansion in the computer code is thoughBor/2 rather thargg: converting the corresponding coefficients
is obviously straightforward.
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As mentioned above, one has to perform simulations witlerdifft values of to extrapolate
towards the limitt — 0 and this increases the required computer-time. Sincentladles 7 is, the
more iterationdN are needed, a possible way to save computer-time mightstafsemploying
larger values of; however, this would compromise the accuracy of the sulsgquextrapolation.
The solution to this drawback is well-known and is represerity high-order integratorsfor the
Langevin equation: these indeed increase the power of &g r-dependence thus allowing to
safely recover the — 0O limit even at large values of the time step.

The easiest way of determining high-order integrators @bably by generalizing the usual
Runge-Kutta schemes for the scalar case: there, given arsaaiabley(7), its derivativey =
f(1,y) and an initial valug/(1o) = yo, them-th order integrator reads:

m -1
Yoi1=Yn+T Y bik <kI:f(Tn+CIT7Yn+TZ ake) ko= f(TmYn)) SN CEY
=1 r=1
The generalization to non-Abelian variables appearsgsttfmirward:

Ynr1=Yn+T ) bk — Up(X Tny1) =eXp [— it by (nu(x, Tn)+~k|)}Uu(X, Tn), (5.2)
=1 I=1

-1
k=f(tt+ar, ynr15a k) —k=STAD A U", 5.3
(et ot 3 a1k 3 T a8 U] (5.3)

whereSJU (] is the expression of the action where all variables have begaced as

Upu(X, Tn) — exp [— iTIerlaLr (n“(x, Th) +R)]Uﬂ(x, Tn), (5.4)

where it is understood thi = YA TATyx ; ASU (Tn)].
As is manifest, the number of operations per update incseagh the order of the integrator: one
will eventually be able to employ larger time steps in thewdations, thus reducing the number of
iterations, but at the price of more costly iterations. Qudg seems to indicate that overall savings
of up to a factor of two can still be achieved.

Now everything boils down at getting the coefficieats, by, ¢ in eq. (5.1) but they can easily
be found in the literature.

At present, the highest integrator available for the NSPiigeain equation is second-order [7]
and reads,

Uy(X, Tn1) = exp[— i <1+ T—CA> <}TR1—|— }TR2> —ivVTNu(X, Tn)]uu(x, Tn) , (5.5)

6 J\2" 72
ka = ;TADX,,J,AS{U(W] : (5.6)
ko = ;TADX,H,AS[G(Z)] , (5.7)
07 (x,.) = exp[—irkl_i\/?r;u(x, ) |Up(x, 1) | (5.8)
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whereC, is the Casimir invariant of the Lie group’s adjoint represgion: note that the noise
employed in eqgs. (5.5) and (5.8) is the same. The second tetimeifirst square brackets in
eg. (5.5) — not appearing in Runge-Kutta literature — comasfthe non-commutativity of group
derivatives introduced in eq. (4.3). Apart from a rescdling T with 3 [5], the integrator can be
determined by calculating the equilibrium distribution tbe corresponding discretizegbkker-
Planck equation

At present, analytical calculations are undertaken inr@eompute the corresponding non
Abelian shifts for both the third- and the fourth-order giator.

6. Preliminary results

As can be seen from eq. (5.5), the above-mentioned non-&bsiliift only affects loops higher
than the first and thus we are already in the position of comgame-loop results obtained with
different integrators: the variable we choose is the pltgua a lattice exterit = 4.

Figure 1 shows how the slope inchanges with the integrator as expected while, in Table 1, we
collect our numerical results: as desired, the accuracyirerather good even when employing
largert values in the simulations.

Order of integrator, Employed time steps 1-loop plaguette
1 10, 15, 20 1.9930(7)
2 50, 60, 70 1.9922(6)
3 90, 100, 110 1.9918(10)
4 110, 122, 130 1.9914(10)

Table 1: Comparison between 1-loop results for different integiaéd L=4. the diagrammatic= 4 value
reads 19921875...

The second-order integrator should already be working yopemturbative order so that, as
a second test, we can check whether higher loops are undeolcmo when increasing the time
steps in the simulations: this is done in Table 2 where beackmlaquette results &t = 4 are
provided by the first-order integrator that has been in useediong.

Order of integratonn 1stloop | 2ndloop | 3rdloop | 4th loop
1 1.9930(7)| 1.2027(18)| 2.8781(67)| 8.994(30)
2 1.9922(6)| 1.2002(17)| 2.8778(62)| 8.990(28)

Table 2: T — 0 results from 1st and 2nd order integratorg at 4: the 1- and 2-loop diagrammatic values
read 19921875.. and 12037037... The time steps employed can be found in Table 1.

In Figure 2 we compare thie— 0 results from the second order integrator to the correspgnd
diagrammatic results for differeht At L = 2 there is some disagreement which might be due to
different ways of treating zero modes. The ratios of diagreatic finite over infinite volume results

"The B prefactor within eq. (2.1) needs to be compensated for amtsarjuently, the rescalimg— 1/ is required
in everyintegration scheme, including Euler’'s most trivial one.
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Figure 1: 1-loop plaquette vsr at L=4: data Figure2: Ratio NSPT results/diagrammatic values
come from first-, second- and third-order integravs.L for the 1- and 2-loop plaquette (blue dots and
tor (blue, red and black points respectively). red diamonds respectively).

read 0.907 (0.907) fdr = 2 and 0.994 (0.986) fdr = 4 at 1-loop (2-loop) level, respectively: finite
volume effects are much bigger than this disagreement leetd@grammatic results (neglecting
zero modes) and NSPT (subtracting zero modes). The infiaitene limit remains unaffected.

7. Conclusions

The computation ot(szv)v is at an early stage: at present, we are trying to single @utrtbst
reliable approach.

As for higher-order integrators for the Langevin equatifirst results seem to confirm good

gains in computer-time, without any loss in numerical aacyr
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