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1. Motivation

A problem one has often to face when handling lattice resultsis taking the continuum limit.
A viable way of reducing the impact of lattice artifacts (byremovingsome of them) is given

by the Symanzik improvement programme [1] which, as is well-known, has allowed to remove
O(a) artifacts in unquenched simulations. The irrelevant term to be added to the lattice action was
determined by Sheikoleslami and Wohlert [2] and contains the so-calledcSW coefficient which can
be expanded perturbatively in even powers of the bare coupling g0.
While the zero- and one-loop coefficients of this expansion have already been computed for diffe-
rent lattice actions [3, 4] (see also references therein), the two-loop contribution is still unknown:
within the Wilson formulation of Lattice QCD (LQCD), we address its determination using NSPT,
a tool that allows for perturbative calculation in lattice-regularized quantum field theories.

In the second part, we discuss a technical issue of NSPT that is related to the discretization of
the Langevin equation that governs the evolution of the system: our target is to obtain high-order
integrators, aiming at reducing the computer-time at fixed accuracy.

2. Wilson formulation of LQCD and improvement: some notation

The Wilson actionSW of LQCD can be decomposed into gauge (SG) and fermionic (SF ) parts
with1,

SG = β ∑
n,µ ,ν
µ>ν

(
1− Tr

2Nc

[
Uµν(n)+U†

µν(n)
])

, (2.1)

whereβ = 2Nc/g2
0, Nc is the number of colours,Uµν(n) is the lattice plaquette and,

SF = ∑
n,α ,b
m,β ,c

ψ̄αb(n)Mnαb, mβc[U ]ψβc(m) , (2.2)

with

M [U ]nαb,mβc = −1
2∑

µ

[
(r − γµ)αβ Uµ(n)bc δn+ µ̂,m+(r + γµ)αβ U†

µ(m)bcδn− µ̂,m

]
+

+(M̂0+4r)δnmδαβ δbc . (2.3)

In eq. (2.3),r is the Wilson parameter (which we will set to 1) whilêM0 is the bare mass.
The Sheikoleslami-Wohlert irrelevant contribution (SSW) to be added to the Wilson action is

given by2,

SSW =
i
4

cSW∑
n, µ ,ν

ψ̄(n)σµν F̂µν(n)ψ(n) , (2.4)

whereσµν = i/2[γµ ,γν ] while F̂µν(n) reads,

1In the equations of this and the subsequent section it is understood that all dimensionful quantities have been
rescaled with powers of the lattice spacinga to be dimensionless (some of them carry an extra "hat" to emphasize this).

2In the following equations, spin and colour subscripts are suppressed to ease the notation: they can obviously be
restored as in eq. (2.3).
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F̂µν(n) =
1
8

(
Qµν(n)−Qν µ(n)

)
, (2.5)

with Qµν(n) being the clover term,Qµν(n) = Uµ ,ν(n)+U−ν , µ(n)+Uν ,−µ(n)+U−µ ,−ν(n).
As already anticipated, the coefficientcSW appearing in eq. (2.4) can be decomposed as

cSW = c(0)
SW+c(1)

SWg2
0 +c(2)

SWg4
0 +O(g6

0) , (2.6)

wherec(2)
SW is the target of our computation.

3. How to measure c(2)
SW

A suitable observable to determinec(2)
SW is given by the pion propagator3,

Gbc(n−m) = − ∑
α , β , δ , ε

〈ψ̄αb(n)(γ5)αβ ψβb(n)ψ̄δc(m)(γ5)δε ψεc(m) 〉 =

= ∑
α , β , δ , ε

〈(γ5)αβ

[
M̃ −1

]
nβb, mδc

(γ5)δε

[
M̃ −1

]
mεc, nαb

〉U =

= ∑
α , ε

〈
[
M̃ −1

]∗
mεc, nαb

[
M̃ −1

]
mεc, nαb

〉U = ∑
α , ε

〈
∣∣∣∣
[
M̃−1

]
mεc, nαb

∣∣∣∣
2

〉U , (3.1)

whereM̃ is the fermionic operator obtained by adding together eqs. (2.2) and (2.4): for details
about its inversion, see [5]. After switching to momentum space and defining the dimensionless
quantities ˆpµ = pµa and p̂2 = ∑µ p̂2

µ (being thepµ’s the lattice momentum components), one can
invert the propagator to obtain theΓ̂-function which can be decomposed as,

Γ̂(p̂,m̂cr,g0) = p̂2 + M̂2
0 + M̂2

W(p̂)− Σ̂(p̂,m̂cr,g0) , (3.2)

whereM̂W(p̂) is the irrelevant Wilson mass,̂M0 the (perturbative) pion rest mass andΣ̂(p̂,m̂cr,g0)

the self-energy with ˆmcr the critical mass defined as ˆmcr = Σ̂(0,m̂cr,g0). Since we want to develop
a mass-independent scheme, we will both setM̂0 equal to zero and subtract the proper mass coun-
terterms to keep fermions massless.

Given that we are eventually interested in a perturbative approach, we can expand̂Σ(p̂,m̂cr,g0)

as a series ing2
0, i.e. Σ̂(p̂,m̂cr,g0) = ∑k Σ̂(k)(p̂,m̂cr)g2k

0 , and decompose a generic coefficient
Σ̂(k)(p̂,m̂cr) by means ofhypercubic invariantsas,

Σ̂(k)(p̂,m̂cr) = α(k)
1 (m̂cr)+ α(k)

2 (m̂cr)∑
ρ

p̂2
ρ + α(k)

3 (m̂cr)∑
ρ

p̂4
ρ + . . . . (3.3)

A possible approach to determinec(2)
SW would consist of expanding the pion and quark self

energies4 in a combined way: one could takec(0)
SW = 1 to obtainκc to O(β−1), then take this value

to tunec(1)
SW to make the pion mass vanish; next, one revisits the quark propagator to determineκc

to O(β−2) and so on tillc(2)
SW is determined5.

3The subscript "U" means that the corresponding average has to be performed on gauge configurations only.
4Formulae similar to eqs. (3.2)–(3.3) hold also for the quarkpropagator though the Dirac structure is more involved.
5It is clear that, requiring the pion to be massless, also implies settingM̂2

0 equal to zero.
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An alternative strategy could be the following: recall thatSSW was introduced to remove
O(a) artifacts and the pion propagator contains the product of two quark propagators. One should
be able to establish a correspondance between terms proportional toa in the operatorM̃−1 and the
ones proportional toa2 in theΓ̂-function, namelyα(k)

3 . If one now tunesc(0)
SW andc(1)

SW to their known

values and observes that, correspondingly,α(1)
3 andα(2)

3 vanish, one can fixc(2)
SW by requiringα(3)

3

to be zero. This approach is maybe less rigorous but nonetheless should be worth studying.

4. Numerical setup

The method of our choice is NSPT. It is related toStochastic Quantization[6] which consists
of introducing an extra coordinate, a stochastic timet, together with an evolution equation of the
Langevin type,

∂φ(x, t)
∂ t

= −∂S[φ ]

∂φ
+ η(x, t) , (4.1)

where in this exampleφ(x, t) is a scalar field whileη(x, t) is a Gaussian noise.
Starting from this, the usual Feynman-Gibbs integration can be recovered by noise-averaging as

Z−1
∫

[Dφ ]O[φ(x)]e−S[φ(x)] = lim
t→∞

1
t

∫ t

0
dt ′

〈
O[φη(x,t ′)]

〉
η . (4.2)

ForSU(3) lattice variables the Langevin equation has to be modified into [5],

∂tUµ(n, t) = −iT A
(

∇n, µ , AS[U ]+ηA
µ (n, t)

)
Uµ(n, t) , (4.3)

in order to obtain an evolution of the variables within the group: hereTA = λ A/2 are Gell-Mann
matrices whileηA

µ (n, t) are again Gaussian noise components.
The missing ingredient, i.e. Perturbation Theory, is introduced by expanding theU ’s as6,

Uµ(x, t) −→ ∑
k

β− k
2U (k)

µ (x, t) , (4.4)

When plugging this into the Langevin equation, this resultsin a system of coupled differential
equations that can be solved numerically via a discretization of the stochastic timet = Nτ , where
τ is a time step.

In practice, the system is evolved for different values ofτ , then we average over each therma-
lized signal to realize the limitt → ∞ of eq. (4.2). Finally we extrapolate inτ to theτ = 0 limit
of the desired observable: this extrapolation is needed since the correct Boltzmann equilibrium
distribution is recovered only for continuous t.

5. High-order integrators for NSPT

The cSW-simulations are an ongoing project such that the numericalresults presented here
refer to improvements of the NSPT algorithm.

6The expansion in the computer code is thought onβ−1/2 rather thang0: converting the corresponding coefficients
is obviously straightforward.

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
1
5

Towards a determination of cSW using NSPT C. Torrero

As mentioned above, one has to perform simulations with different values ofτ to extrapolate
towards the limitτ → 0 and this increases the required computer-time. Since the smallerτ is, the
more iterationsN are needed, a possible way to save computer-time might consist of employing
larger values ofτ ; however, this would compromise the accuracy of the subsequentτ-extrapolation.
The solution to this drawback is well-known and is represented byhigh-order integratorsfor the
Langevin equation: these indeed increase the power of the leadingτ-dependence thus allowing to
safely recover theτ → 0 limit even at large values of the time step.

The easiest way of determining high-order integrators is probably by generalizing the usual
Runge-Kutta schemes for the scalar case: there, given a scalar variabley(τ), its derivativey′ =

f (τ ,y) and an initial valuey(τ0) ≡ y0, them-th order integrator reads:

yn+1 = yn + τ
m

∑
l=1

bl kl

(
kl = f

(
τn +cl τ ,yn+τ

l−1

∑
r=1

al ,rkr

)
; k1 = f (τn,yn)

)
, (5.1)

The generalization to non-Abelian variables appears straightforward:

yn+1= yn + τ
m

∑
l=1

bl kl −→Uµ(x,τn+1)=exp
[
− iτ

m

∑
l=1

bl

(
ηµ(x,τn)+ k̃l

)]
Uµ(x,τn) , (5.2)

kl = f
(
τn+clτ , yn+τ

l−1

∑
r=1

al , rkr

)
−→ k̃l =∑

A

TA∇x,µ ,AS[ Ũ (l)] , (5.3)

whereS[Ũ (l)] is the expression of the action where all variables have beenreplaced as

Uµ(x,τn) −→ exp
[
− iτ

l−1

∑
r=1

al , r

(
ηµ(x,τn)+ k̃r

)]
Uµ(x,τn) , (5.4)

where it is understood thatk̃1 = ∑ATA∇x,µ ,AS[U(τn)].
As is manifest, the number of operations per update increases with the order of the integrator: one
will eventually be able to employ larger time steps in the simulations, thus reducing the number of
iterations, but at the price of more costly iterations. Our study seems to indicate that overall savings
of up to a factor of two can still be achieved.

Now everything boils down at getting the coefficientsal , r ,bl ,cl in eq. (5.1) but they can easily
be found in the literature.

At present, the highest integrator available for the NSPT Langevin equation is second-order [7]
and reads,

Uµ(x,τn+1) = exp

[
− i

(
1+

τCA

6β

)(
1
2

τ k̃1 +
1
2

τ k̃2

)
− i

√
τηµ(x,τn)

]
Uµ(x,τn) , (5.5)

k̃1 = ∑
A

TA∇x,µ ,AS[U(τn)] , (5.6)

k̃2 = ∑
A

TA∇x,µ ,AS[Ũ
(2)

] , (5.7)

Ũ
(2)
µ (x, .) = exp

[
− iτ k̃1− i

√
τηµ(x,τn)

]
Uµ(x,τn) , (5.8)
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whereCA is the Casimir invariant of the Lie group’s adjoint representation: note that the noise
employed in eqs. (5.5) and (5.8) is the same. The second term in the first square brackets in
eq. (5.5) — not appearing in Runge-Kutta literature — comes from the non-commutativity of group
derivatives introduced in eq. (4.3). Apart from a rescaling7 of τ with β [5], the integrator can be
determined by calculating the equilibrium distribution ofthe corresponding discretizedFokker-
Planck equation.

At present, analytical calculations are undertaken in order to compute the corresponding non-
Abelian shifts for both the third- and the fourth-order integrator.

6. Preliminary results

As can be seen from eq. (5.5), the above-mentioned non-Abelian shift only affects loops higher
than the first and thus we are already in the position of comparing one-loop results obtained with
different integrators: the variable we choose is the plaquette at a lattice extentL = 4.
Figure 1 shows how the slope inτ changes with the integrator as expected while, in Table 1, we
collect our numerical results: as desired, the accuracy remains rather good even when employing
largerτ values in the simulations.

Order of integrator Employed time steps 1-loop plaquette

1 10, 15, 20 1.9930(7)

2 50, 60, 70 1.9922(6)

3 90, 100, 110 1.9918(10)

4 110, 122, 130 1.9914(10)

Table 1: Comparison between 1-loop results for different integrators at L=4. the diagrammaticL = 4 value
reads 1.9921875. . ..

The second-order integrator should already be working to any perturbative order so that, as
a second test, we can check whether higher loops are under control too when increasing the time
steps in the simulations: this is done in Table 2 where benchmark plaquette results atL = 4 are
provided by the first-order integrator that has been in use since long.

Order of integrator 1st loop 2nd loop 3rd loop 4th loop

1 1.9930(7) 1.2027(18) 2.8781(67) 8.994(30)

2 1.9922(6) 1.2002(17) 2.8778(62) 8.990(28)

Table 2: τ → 0 results from 1st and 2nd order integrators atL = 4: the 1- and 2-loop diagrammatic values
read 1.9921875. . . and 1.2037037. . .. The time steps employed can be found in Table 1.

In Figure 2 we compare theτ → 0 results from the second order integrator to the corresponding
diagrammatic results for differentL. At L = 2 there is some disagreement which might be due to
different ways of treating zero modes. The ratios of diagrammatic finite over infinite volume results

7Theβ prefactor within eq. (2.1) needs to be compensated for and, consequently, the rescalingτ 7→ τ/β is required
in everyintegration scheme, including Euler’s most trivial one.
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Figure 1: 1-loop plaquette vs.τ at L=4: data
come from first-, second- and third-order integra-
tor (blue, red and black points respectively).
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Figure 2: Ratio NSPT results/diagrammatic values
vs.L for the 1- and 2-loop plaquette (blue dots and
red diamonds respectively).

read 0.907 (0.907) forL = 2 and 0.994 (0.986) forL = 4 at 1-loop (2-loop) level, respectively: finite
volume effects are much bigger than this disagreement between diagrammatic results (neglecting
zero modes) and NSPT (subtracting zero modes). The infinite volume limit remains unaffected.

7. Conclusions

The computation ofc(2)
SW is at an early stage: at present, we are trying to single out the most

reliable approach.
As for higher-order integrators for the Langevin equation,first results seem to confirm good

gains in computer-time, without any loss in numerical accuracy.
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