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1. Introduction

Establishing a quantitative connection between the lowggnand the perturbative regimes of
QCD is one of the primary tasks for any attempt to solve QCDntjtaively. For lattice QCD, the
main problem consists in the large scale differences imghlwhich cannot be resolved on a single
finite lattice. A solution to this “non-perturbative renaahsation problem” has been proposed
a while ago [1] and amounts to apply recursive finite sizeisgakchniques to the renormalised
parameters and operators in a suitable renormalisati@nsehThe Schrédinger functional (SF) [2,
3] gives rise to a class of such schemes with a number of teghadvantages. In QCD with zero
and two quark flavours, the running coupling [2, 4, 6, 7] andrjumasses|5, 8, 9], as well as
a range of composite operators have been studied. Notehthdintl results are obtained in the
continuum limit and thus independent of the details of thicka regularisation. Most results have
been obtained using the implementation of the SF in QCD wiilsoff type quarks [3]. However,
for applications to QCD with four quark flavours, or for QCRditheories with multiples of four
fermion flavours staggered fermions appear to be a natueshative. Interesting universality tests
could be devised and one may expect a better control ovetitehaum limit. Hence, in view of
applications to four-flavour QCD we here revisit the implenagion of the Schrodinger functional
for staggered quarks, which has previously been studiedldnJ1]. Its applications have so far
been limited to studies of the running coupling for QCD-likeories with eight, twelve and sixteen
fermion flavours [11, 12]. As noticed in [10, 11], the timeent of the lattice,T /a, needs to be
odd with staggered quarks, whereas the spatial latticetdires must have even exteit/a. This
makes it impossible to sét= T exactly, and one needs to deal with the resulting)@ffects. In
order to cancel those, Heller [11] proposed to average teefard the gauge coupling obtained in
two separate simulations with= L £ a. While this seems to work out for the SF coupling, at least
to one-loop order in perturbation theory, it is less cleavtho proceed in the case of fermionic
correlation functions. In particular, one needs to disduss to reconstruct the four-component
spinors in both cases, only one of which was considered ih [tigally, one would like to avoid
the averaging procedure altogether, and it has been shatlve pure gauge theory how this can be
achieved by redefining the approach to the continuum lind}.[1

This writeup is organised as follows. We start by reviewihg basics of the Schrédinger
Functional and the definition of fermionic correlation ftinos. Next we reconstruct the action in
terms of the four-component spinors for both ca3és; T L=a. A chiral rotation is then carried out
to recover the standard Schrodinger Functional boundamgiions for the fermionic fields. We
show the results of the computation of the correlation fianst at tree level of perturbation theory
and we finish with an outlook to future work.

2. The Schrddinger Functional and correlation functions

The Schrédinger Functional is the Euclidean path integfaD©D on a hyper cylinder as
space-time manifold. Dirichlet boundary conditions aredased at Euclidean timeg = 0, T,
while all fields arel-periodic in the spatial directions. For the fermionic feetthe sets

PLy(y)]y,—o = P(Y) P-y(y)|,_r =pP'(¥).
PY)P-|,_o=P(y) PP |, _r=P'(Y), (2.1)
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whereP. = %(1i o). Using a continuum notation, the spatial gauge field compisngatisfy the
conditions,

AW)]yo=Ck  AW)|y_1 =Ck (2.2)

The Schrodinger Functional can then be regarded as a faattid the boundary fields,

Z(C.C.p.p P07 = [ 7IA Y. FleShI), (2.3)

and expectation values of any product of fietdsare defined by,

(0) = {% /D[A, v, We‘s“‘*“@} : (2.4)
p=p'=0;p=p'=0
Note that observables may contain quark and antiquark fektie boundaries, by including deriva-
tives with respect to the fermionic boundary fieldgy) = %(y), Z(y) = —%(y), and analogously
for {'(y),{’(y). Provided the gauge boundary fields are taken to be spatiaiigtant, one may

obtain gauge invariant quark bilinear sources at the baigglasuch as
0= [dyy ¢y )it y), (2.5)

wheret?@is a flavour matrix and both the quark and anti-quark fieldgpangected to zero momen-
tum. Using such sources the simplest fermionic correldftimetions for the axial vector current
and density take the form [14]

o) = —(MWO°),  Byo) =—(PA(y)e®),  fP=—(6%0").  (26)
Note that with an exact flavour symmetry all correlation fims would be proportional t62°.

3. Reconstruction of the four component spinors
3.1 CaseT’'=T—a

This case is the one already discussed in[10, 11]. The foommponent spinors reside in a
coarse lattice with lattice spacirag= 2a. In Figure 1, the thin lines correspond to the fine lattice,
and the dots represent the points of the coarse lattice wheneconstructed fermions live. The
variabley refers to the points in the coarse lattice, antb the fine lattice, and they are related
by x = 2y +aé, with &, taking values in{0,1}. Introducing the transition fieldg: (y) = x(x),

Dirichlet

Lo 0 2 3 4.5
Qv Q-
L L— L—

Lo 1 2

Figure 1: Reconstruction of the spinors orfTa= L + a lattice.
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Xz (¥) = X(x). the transformation is specified as

boa) = 3 (T)ouXe ) Boa) = 3 3 X0 (o) 3.1)

with T'g = %y§°yfly§2y§3. In Figure 1, the one-component fermionic fields which citunst a re-
constructed quark field are the ones contained in the cirdidste that the Dirichlet boundary
conditions atxg = 0, T, imply a projection onto half of the components of the retatsed quark
field. Labelling the (hermitean) flavour matrices by}hyeimatrix structure, e.gry, = yJ, Tys =
i(ypyg)T..., and denoting the symmetric derivative By and the second derivative ldy,, the
boundary conditions read

Q. y(0y) = p(y), QT y)=p
5

a

),
¢(0,y)Qs = p(y), ¢(Ty)Q- ,

(y)

with projectorsQ.. = %(1i iYoYsTos). For homogeneous boundary conditions, and with all fields
at timesxg < 0 andxg > T’ set to zero, the reconstructed action takes the form,

(3.2)

- _
— 1) — ~ .a
V=2 Z: »: % B(Y) | YO +i5V6TusBy | (). (3.3)
The usual SF boundary conditions can be recovered by pdarfgrarchiral rotation of the fermionic
fields,

Y(y) =R@)g(y), ¥'y)=0yR(@), Ra)=expisyos). (3.4)

Fora = J the boundary conditions become the usual ones (2.1), dREX.R*(J) = P... For
homogeneous boundary conditions, the action in the stdr8labasis takes the form,

'(y), (3.5)

TI J—
s=-1) A T 5, a
%Q =a y;g '(y) [Z WZk+ Yoo + 580

With Zk = O+ 2 s ksl

3.2 Casel’'=T+a

Here, we distinguish two alternative ways of reconstrugtine fermions, as illustrated in
Figure 2. We have labelled the two reconstructions with 1*, according to the sign in front of

&in Eq. (3.6).

s=1" s=1"
xo—2yo—a+a<fo, x=2y+af, Xo—2yo—an, x=2y+ag,
Yaaly 42 r{ aaXz(Y), Yaaly 42 Ce)aaXs(y), (3.6)
L/—’aa = ZXE )aa L.Uaa = %Z)Zf rT)
3

b}

¢=3(-1) °v§,va§v§-
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Figure 2: Reconstruction of the spinors ofTa= L — a lattice. Lefts= 1", right,s=1"

The interpretation of Figure 2 is the same as Figure 1. Eg8) &pecify how to reconstruct the
four-component fermions in both cases. Depending on ttenstuction, the boundary conditions
are different, and therefore the chiral rotations neededstore the usual SF b.c.’s differ, too:

s=1F s=1
Q*lnu(0>y) = ijv Q+‘1U(OaY) = fj/> Q+‘1U(Oa)’) = ﬁ? Q*lnu(0>y) = ijlv
POYQ =p, FOYQ =7, POy =p FOYQ-=p, @7

Y'(y) =RE-5Huly), ¢(y)=udyR-5), V') =REHWY), ) =udyR3E).

However, once rotated to the standard SF basis, the actidiofo cases = 1* is the same,

K=y @)

Yo,y

Z Wk + Yoo — g_Ao] W'(y). (3.8)

3.3 Symmetries of the SF with staggered fermions

The symmetries of the SF with staggered quarks have been atisech by Heller [11]. We
here just wish to emphasise that the flavour and chiral synesetfer to a particular basis. As we
have seen, the boundary conditions may depend on the waguhsyinors are reconstructed. Itis
only after performing a chiral non-singlet rotation that ttandard SF is recovered. In this basis,
the usual axial U(1) symmetry of staggered quarks becomewaufl symmetry. More precisely,
the transformation

Yly) — €P%5u(y),  Ply) — Bly)ehrs, (3.9)
when rotated into the SF basis, becomes a continuous flayoumstry with generatory,
Yy —efoyy),  dy) - dye . (3.10)
Furthermore we note that spatial translations by aaioi the fine lattice.
W) = (y) +anQu (awly) I — IYw+apy)anQy,  (3.11)

with Q(ik) = %(11 WY5Tks), correspond to a discrete subgroup of flavour symmetry indhénuum
limit.
4. Correlation functions at tree level

To evaluate the correlation functions we first integrater tlre quark fields. The expectation
value assumes the fort@) = ([0]r ), Where()g denotes the gauge field average. We have deter-
mined the free quark propagator both analytically and nically and may therefore compute the
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correlation functions to tree level. The remaining chisaghsnetry of Eq. (3.9) becoming a flavour
symmetry with generatar in the standard SF basis, disconnected diagrams in the datigouof
fa, fp, f1 are forbidden if we choose those flavour matrices which antraute withty. For these
matrices, the correlation functiorig®(yo) reads,

200 =& 5 2 (i (K0P O wrrW I Tekr)), @.)

Yy

and analogous expressions are obtained in the other cabkescohtinuum values of;’g‘b at tree
level with vanishing background field take the ford®° fy, with
N, N, N
fA(T')2) = ——————, p(1T)/2)= ——, f1=—"F%"—. 4.2
a(T'/2) costf(/36) o(T/2) cosHv30)" ' cosR(v/36) (4-2)
where 6 is a phase factor coming from the generalised boundary tonsgj i.e. ¢(y+ LR) =
e9y(y), P(y+Lk) = @(y)e'?. Including the correct tree level boundary counterterm résailts
obtained are accurate up td&) for fp, f; and Q(a) for fa.

5. Fermionic O(a) improvement
5.1 Infinite volume

Close to the continuum limit, the lattice theory may be diesct in terms of a local effective
theory with action [15],

Si=S+as+a@St ..., SK:/‘d“yzk(y) (5.1)

The apparent @) contributions on the infinite lattice are fixed by the shiftrsyetry, since itis the
combined expressiof, y, that is invariant under this transformation and not the Lisnatic term
alone As was pointed out in [16], there are no invariant disi@m5 operators, so no counterterms
can be added. The standard procedure to eliminate the a2 terms consists in defining
improved field,

W) = )+ 53 @A),
B ) = B+ 53 PamQ - 52)
in terms of which one finds,
So=2a ¥ (y)yudut' (v) +0(8). (5.3)

i
5.2 Ofg) effects from the boundaries

In the SF framework, additional renormalisations and)@(toff effects may arise from the
very presence of the boundaries. Taking the symmetriesartount, we arrive at the conclusion
that there is only one possible dimension 3 operady)’. This is the same as encountered for
Wilson quarks, and can thus be absorbed in a multiplicagmwemmalisation of the quark and anti-
qguark fields at the boundaries.
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In the case of dimension 4 operators, we obtain again the sesoét as for Wilson quarks.
However, when using the equations of motion, we here pradéfexent choice for the counterterm
action, namely

8SeplU, B, W] =&y { (ch — DG + Gl + (¢ — 1) o+ Gh2l | (5.4)
y

Ob1 =P (0,Y)PL W (0,Y), Gz =p(y)WZkp(y), (5.5)

Op1=W(TY)P-UZW(T,Y), Opo=p (Y)WZkP'(Y), (5.6)

The coefficients; » have a perturbation expansion in powersggane have determined, at tree
level,

d§°’ —1+°. (5.7)
6. Conclusions
We have reconstructed the four-component spinors in theiBFstaggered quarks, for both
casesl’ = T £ a, computed the free propagator and the correlation funstignfp, f; at tree

level. The implementation of @) improvement is work in progress. Once it is fully understood
we plan to trace the running of the SF coupling and the quadsrimafour-flavour QCD
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