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1. Introduction

The quark masses are important both as fundamental paranaeid, more pragmatically, as
inputs to experimental determinations of CKM matrix eletsgil]. The charm quark is particu-
larly important because of the large flavour physics progitaum it has been somewhat neglected
on the lattice due to the difficulty in simulating it accufgtén these proceedings, we make use of
the highly-improved staggered quark (HISQ) action [2] to&st a value for the charm quark mass
from dynamical lattice QCD. Empirically, the HISQ actionkisown to reduce th&'(asa®) errors
which remain in the AsqTad action, and which are thought tabte-changing errors, making pre-
cision charm physics possible [2]. It does this by repedtiegAsqTad link smearing, which further
suppresses taste changing interactions, and also by tiog¢lee dispersion relation through ad-
justment of the Néaik term coefficient. In this work, we aim teuhese features to calculate the
charm quark mass fromy correlators on the lattice.

In quoting a determination of a quantity such as the charmkgmaass, it is customary to
convert to theMS renormalization scheme and to use a standard scale (e.gV)3Ge do this
directly from a determination of the bare lattice QCD masgies lattice perturbation theory. The
trend towards increasingly complicated actions, such &Xlhas made most calculations of this
type a major computational undertaking. One tool developedsponse to this is the use of weak
coupling orhigh-B simulations [3]. At sufficiently large values of the cougip (equivalently,
sufficiently small lattice spacings) a lattice simulatioiil Wwave a small physical volume and a
very large cutoff§ 11/a). These are precisely the conditions required to probe émtugbative
regime of QCD and when perturbation theory is done in this (lgyMonte-Carlo) all orders are
automatically included. When it is used in combination watlechnique like constrained curve
fitting, the high$ technique can allow diagrammatic results to be extendetdemext order at
the cost of running some extra simulations, provided théityuzf the high8 results is sufficient.
This approach has been successfully demonstrated in [4oWse, there are some complications,
mostly related to the very small volumes of the simulatidng,the two most significant problems:
the existence of zero modes afg tunneling, are known to be effectively resolved by the use of
(color) twisted boundary conditions[5], see e.g. [6]. listivork, we will use high8 simulations
with twisted boundary conditions on all of the spatial disiens to do part of the second order
matching.

The recently published determination of [7] also used HIS@rks and a mixture of contin-
uum and lattice techniques to calculate the charm quark,rfiadisg my<(3 GeV) = 0.986(10) GeV.
The calculation we will present uses a completely differaathod, extractingn, from n. correla-
tors before manually matching to tMSscheme. Together we view these independent calculations
as giving important cross checks of one another.

2. Matching to the MS Scheme

The lattice charm quark massn; can be matched to thelS scheme maseyg using the
on-shell mas$/ as an intermediate stage.
Migs(t) = M [1+ (Bual + Buo) azs(H) + (B22l® + Baal + Bao) aZs(1)] + O(a3o)
M = ame [1+ (Auil + Ao) L + (Agal? + Apsl + Ago) af] + O(ad), (2.1)
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whereL = logamc andl = logu /M. The relation betweemy;s andM (the B coefficients) is given
to third order in [8] so only thé\ coefficients are unknown. The connections betwegr- ay,
andayg — ay are given in [9] and [10] respectively. Writingys in terms ofam, to second order
in ay and demanding that the unphysical dependende -erlogam, vanishes gives conditions on
the coefficientdA11, Ao andAz1 which result in the form

Mys(H) = ame (14 (Zualay + Z10) v (a0") + (Za2l 3, + Zaalay + Z20) 03 (aq”)) + O(ad)
— am+ cy(ma)a () + (Caq + C2g) a2 (ad) + (), 22)

with |, = logau and
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The splitting of the fermionic and gluonic portions of in the second line of equation (2.2) is
motivated by there being only 4 fermionic diagrams for theosel order mass renormalization.
These diagrams have been evaluated using diagrammatichadion theory (see [11] for an out-
line of this calculation, final results are in preparatiohjie remaining diagrams which contribute
to ¢ g represent a much larger undertaking and are our motivatiothé use of the higi- tech-
nique. One advantage of the split is that we only reqgirenched results forc, g. The remaining
unknown coefficient#\;g andAzg = Aco g+ Ao f, Can then be expressed in the following way

C1 2
A= —+—L 2.4
10 amc+ L (2.4)
L?> 144logm, c¢logr/aq 7 5
Asog = (== — L— 1y
20,9 <3n2 6712 3rame > ot
2c; 79+ 132logrt+ 24nv 271C, o + 11cq log 11/aq + 21y v
(% g [ 10') | . 2MC2g 1log7r/aq V10 (5 5)
T 127 2ame

Ay ¢ comes from the diagrammatic analysis of [11]. Together egfhation (2.3) these coefficients
allows us to evaluate equation (2.2) and extract a physalakg ofimgs.

3. Resaults

3.1 ThelLattice Charm Quark Mass

The lattice bare charm quark mass was tuned by adjustindtiittba n. mass agreed with
experiment on four ensembles of the MILC collaboration’sfigurations [12]. In this tuning the
scale was set using MILC values af/a and the value; = 0.321(5)fm [13] . The bare mass was
adjusted for any mistuning (a very small effect in all case®) then converted to the bare tree level
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mass$ which is the quantity related to tHdS mass in equation (2.2). Theiree Values are given
in Table 1.

Size Upam,  Upams | amg amy, Metree/ GEV | 14-€ ri/a
0.0194 00484| 0.85 | 2.2696417) | 1.1002)(2) | 0.66 | 2.129(11)
0.0097 00484| 0.85 | 2.2703116) | 1.0980)(2) | 0.66 | 2.133(11)
002 Q05 | 0.648| 1.8415317) | 1.0405)(1) | 0.79 | 2.6508)
)
)

16° x 48

20° x 64
x84 501 aos | 066 1.8714712) | 1.0416 0.79 | 2.610(12)

)
)
)
2 x64 0005 Q05 | 0.65 | 1.8494911) | 1.0393) 0.79 | 2.632(13)
)
)

0.0124 0031 | 0.427 | 1.3073111) | 0.97185)(11) | 0.885 | 3.711(13)
0.0062 0031 | 0.43 | 1.3169312) | 0.97155)(11) | 0.885 | 3.684(12)
488 x 144 00036 0018 | 0.28 | 0.915558) | 0.912925)(9) | 0.949 | 5.277(16)

28% x 96

Table 1: Simulation parameters for extracting the lattice charnrkjoeass The value of the correction of the
naik term,e used here was determined non-perturbatively forcing theéd of light” to be 1. This differs,
but not significantly, from the series definition ®fised in the perturbative portion of our calculations. The
value ofry, used to set the scale, was taken tope 0.321(5) fm

3.2 High-B Perturbative Results

HISQ ASQTAD
L3xT 63x16, &x20,10x,128x20 6 x 16, & x20, 1Gx, 128 x 20
B 15,16, 20,24,32,46,62 70,92 1516,20,24,32,46,62,70,92
my 0.30,0.43,0.50,0.66,0.85 0.30,0.40,0.50,0.60,0.70

Table 2: Parameters for the higB-simulations.

We performed high simulations for valence HISQ and AsqTad quarks at the passe
given in table 2. To extraat; andcy g we started from the on shell mabKL, 3) determined by
simulating quark propagators in a Coulomb+Axial gaygand then fitting to the form

aMpole = E1 +C10v (ag*) + C2 903 (aq") + - - . (3.1)

Because higlf results are essentially perturbations around the free, fiédused constrained
curve fitting with the first term set to the free field energy loé HISQ action, allowing us to
evaluate finite volume values fay andc,g4. The values ofay (ag”) were evaluated for each
simulation by measuring the plaguette and using the thigedapansion of lag, . given in [4] to
extractay (qy,q) Which was then evolved to tigg relevant to our simulations.

3.3 Comparison of HISQ c; with Diagrammatic Perturbation Theory

Fits to equation (3.1) were performed including terms ug tay} ) with priors of 045 for all of
thec;. We used the resulting values as a check on our method by comparing to the corresmpnd

IThe tree level mass is related to the bare masswia = Mo ( 1 — oM + 52908 + 5250018 — saoodss a0+ ﬁ’(rr%z))

for HISQ. This relation can be determined from the free fiel8® action.
2This is not the traditional maximal-tree gauge but is modifietake account of the twisted boundary conditions.
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finite volume diagrammatic perturbation theory values aswshin figure 1. Our results were then
extrapolated to the infinite volume limit, where we includedns up to fourth order in the fits with
priors of 0+ 3 for all parameters. These results were also compared goatginatic perturbation

theory results and are again shown in figure 1.

0.80

e
am=0.66 -~
Cl(L)zcl(L:w)+%+%+... 0-70’7&77' am=0.85 -3+
0.60
mass|  c)¢ o’ s osof
0.30 | 0.447717) 0.45057) wo] T
0.43 | 0.493212) 0.4921(7) s
0.66 | 0.597915) 0.59787) e
0.85 | 0.663415) 0.66937)

n

Figure 1: c; infinite volume extrapolations. Boxes are highesults, crosses are diagrammatic PT results.
The errors come from bootstrapping the entire analysis W00 bootstrap re-samples.

3.4 Comparison of AsqTad cp g with Diagrammatic Perturbation Theory

For AsqTad valence quarks, andc; g have already been calculated using diagrammatic per-
turbation theory in [14]. We used finite volume valuescofas priors to aid our extraction ©f g
and then extrapolated to the infinite volume limit¥ia

1 1
Cog(L) =Cog(L=0) + [(X62,1 +Yealogl?) + Q(XCz,Z +Ye, 2logL?) + - (3.2)

whereYe, 1 = i—,lTXcl,l andX, 1 is the same quantity which appears in extrapolatiooy @nd which
we were able to use as a further constraint in our fits. Thdtsesiithese fits are given in figure 2
and we interpret them as lending weight to oplg calculation for HISQ.

4. HISQ cp g From High-

The new result which we present here is a determination afltianic part of thec, coefficient
for HISQ, for which there are no corresponding diagrammpgiturbation theory results. Again
we constrained the finite volum® coefficients with diagrammatic results aXg 1 from ourc;
fits. The final results are shown in figure 3. The results areunaging with the possible exception
of the result foram = 0.30 which may be affected by finite volume corrections. We areently
investigating this possibility by running at larger volusne

5. Conclusions

The high8 method has allowed us to extract a second order perturbetieticient which
would otherwise have beervary expensive calculation in diagrammatic perturbation thedo-

3The justification for this form for the extrapolation comesm [6].
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mass| oY Sa
0.30 | 1.18294) 1.00(2
0.40 | 1.35099) 1.22(3 ¢
0.60 | 1.72(11) 1.65(3
0.70 | 2.02(13) 2.12(4

0.80

0.60

I
0.00

Figure 2: AsqTadcy g infinite volume extrapolations. The boxes are our hiyjfesults and the correspond-
ing infinite volume extrapolation. The crosses are diagratimperturbation theory results. For this check,

the analysis wagot bootstrapped, errors are fitting/statistical only.

0.60

0.40 &

0.20

mass Cog

0.30 | 0.327(34) I
043 | 051539 5o
0.66 | 0.130(56) R SR
0.85 | —0.43863) o

-0.80 -

-1.00
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L

Figure 3: cy g Infinite volume extrapolation for HISQ. The curved lines e fplot are fits to equation 3.3.
The errors come from bootstrapping the analysis with 10@Qdtiap re-samples.

gether with calculations af;, ¢, g and equation (2.2) this allows us to provide a two loop determ
nation of the charm quark mass using HISQ valence quarksfifddeesult for each lattice spacing
we used is given in figure 4. The quoted continuum value comes fitting all lattice spacings
simultaneously while demanding a single common charm quoeags, allowing for higher order
perturbative and discretization errors.

Beyond statistical/fitting errors, the other importantrees of error are the orders excluded
in the perturbative matching and the overall scale detatitin. We estimated the error from the
perturbative matching by repeating our analysis but inolmdhe third order perturbative coeffi-
cients withAgg floated as a very wide prior (845). The resulting determinations are also shown
in figure 4 and suggest that estimating missing order terntsving a typical value obg ~ 0.222
used in the matching is conservative. The error from settiegoverall scale (which we do via)
was estimated as.® from an overall error of 5% onr; because the; error affects only the
binding energy for they. (see [7]). Including these sources of error, our prelimjrrasult is

m'S(u = 3GeV) = 0.983064)(49)(213) GeV (stat.ffitting)(scale)(higher orders) (5.1)

A more systematic determination, including better estamatf the effect of missing higher order
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MSbar m(3 GeV) / GeV

mass mYS(3GeV) iz e e & |
v.coarse (@8 0972953 o .
coarse M3 0977712 oos| ™ ‘ g E} g
fine 066 0974559) oor | B 7
s.fine 085 0.977‘(18) 0%
continuum  — (©83064) 095 -

0.000 0.005 0.010 0.015 0.020 0.025
affm?

Figure 4. Blue points come from full second order analysis, red potaisie from fits which include a
parametrization of the third order terms. The black cirdmes from the analysis of [7].

matching and chiral effects is ongoing and will appear sgbsetly. At present though, our pre-
liminary result is in very good agreement with the deterrioraof [7] though with a slightly larger
error. We interpret this result as a striking demonstratibtine capabilities of modern lattice simu-
lations using highly improved actions such as HISQ to giwxjze and physically relevant results
needed by the rest of the particle physics community.
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