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1. Introduction

Leptonic decays of charmed mesons were not expected to be a channel where new physics
might be found. However, new, precise experimental resultsby CLEO [1] show unexpectedly high
rates in the decaysDs → τν ,µν compared to estimates from decay constants in the quenched ap-
proximation. The HPQCD collaboration found the effect of (rooted) dynamical staggered quarks to
be significantly smaller than the difference between experiment and the quenched calculations [2]1.
Is this evidence for new physics [3], is it a statistical fluctuation or underestimate of systematics
in the experiment, or is it a systematic effect unaccounted for by the errors quoted in [2]? We are
aiming at a precise calculation offDs as well as other observables such as the charm quark mass,
using theNf = 2 CLS configurations which reach small lattice spacings, where the charm quark
mass in lattice units is really small. Here we describe first,encouraging, steps. In particular, we
find small lattice spacing effects for O(a) improved Wilson quarks.

2. The CLS coordinated lattice simulations effort

Coordinated Lattice Simulations (CLS) is a community effort to bring together the human and
computer resources of several teams in Europe interested inlattice QCD. CLS member teams are
located at CERN, in Germany (Berlin, DESY/Zeuthen, Mainz),Italy (Rome) and Spain (Madrid,
Valencia). All CLS simulations use M. Lüscher’s implementation of the DD-HMC algorithm [4]
to efficiently simulateNf = 2 Wilson QCD with non-perturbative O(a) improvement on a variety
of computer architectures ranging from PC clusters to the BlueGene/P at NIC/Forschungszentrum
Jülich.

Table 1 shows the existing CLS ensembles. For this initial study of heavy quark physics on
these ensembles we will use the D2, E6 and Q4 ensembles in order to get an idea of the size of the
sea quark mass and lattice spacing effects.

3. Setting the scale

A final determination of the lattice scale, e.g. viamΩ, is not yet available for the CLS ensem-
bles. In [5] Del Debbioet al. determined the scale on the coarsest (β = 5.3) CLS ensembles to
be a = 0.0784(10) fm via a combination ofmK andmK∗ . We use this as our value fora on the
D2 and E6 ensembles, and run it toβ = 5.7 for the Q4 ensemble by means of the scaleL∗ defined
in [6] via ḡ2(L∗) = 5.5 in the Schrödinger functional scheme. Specifically, we usethe linear fit
log(L∗/a) = 2.3338+1.4025(β −5.5)±0.02.

Since the uncertainty about the scale is an important sourceof error atβ > 5.3, and the some-
what unphysical determination of the scale may be considered as a source of an unquantifiable
systematic error even atβ = 5.3, a more accurate determination of the scale is certainly a priority
in order to make accurate predictions.

1Note that a relatively new discretization for the charm quarks is used.

2



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
2
7

Ds physics from fine lattices Georg von Hippel

4. Measurements and Analysis

We use 6 time-localizedU(1) noise sources per configuration to measure the correlatorsCAA,
CAP, CPA andCPP, where

CXY(x0) = −a3∑
x
〈X12(x)Y21(0)〉 , (4.1)

Pi j = q̄iγ5q j andAi j = q̄iγ0γ5q j , on 61 configurations of D2, 28 configurations of E6, and 31 con-
figurations of Q4, performing a fully correlated error analysis using the Jackknife method in each
case.

As in [7], we define the effective massMeff(x0) via

g(Meff(x0),x0−a)

g(Meff(x0),x0)
=

C(x0−a)

C(x0)
(4.2)

whereg(M,x) = e−Mx +e−M(T−x). Effective matrix elements are defined as e.g.

GPS,eff(x0) =

√

CPP(x0)Meff(x0)

g(Meff(x0),x0)
. (4.3)

We also define the PCAC quark mass as

(ms+mc) = m(x0) =
1
2(∂0 + ∂ ∗

0 )CPA(x0)+cAa∂0∂ ∗
0CPP(x0)

CPP(x0)
, (4.4)

which needs to be renormalized and O(a) improved asm(µ) = ZAZ−1
P (µ)(1+ 1

2(bA−bP)(mqa))m.
In terms of these quantities, the (renormalized) pseudoscalar decay constant is defined asFPS =

ZA(1+ 1
2bA(mqa))mGPS

M2
PS

.
We use non-perturbative renormalization wherever possible, in particular forcA [8], ZA [9],

ZP [10], andbA−bP [11]. Perturbative (one-loop) renormalization is used only for bA, where no
non-perturbative results are available. We translate the PCAC masses into the RGI masses through
non-perturbative running in the Schrödinger functional scheme as in [10].

Id Size a [fm] κ MD τ
D1 48×243 0.08 0.13550 2575
D2 0.13590 2565
D3 0.13610 2520
D4 0.13620 2505
D5 0.13625 2510

E1 64×323 0.08 0.13550 2672
E2 0.13590 2512
E3 0.13605 2512
E4 0.13610 2497
E5 0.13625 2656
E6 0.13635 4960

Id Size a [fm] κ MD τ
M1 64×323 0.06 0.13620 4055
M2 0.13630 3772
M3 0.13640 2980
M4 0.13650 3790
M5 0.13660 2570

P1 96×483 0.04 0.13620 1702
P2 0.13630 started
P3 0.13640 started

Q4 128×643 0.04 0.13640 1450+
Q5 0.13650 1120+
Q6 0.136575 started

Table 1: The existing and running CLS ensembles; ensembles used in this study are shown in boldface. The
molecular dynamics timeτ is given in MD units after thermalisation; trajectory length is typicallyτ = 0.5.
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Figure 1: The quark massMc (divided by 10 for scale) andfDs as a function of(m2
K − 1

2m2
π) on the E6

ensemble, together with the linearly extrapolated values at the physical point.

5. Preliminary results

5.1 Ds masses and Mc

Using two heavy quark masses on each ensemble, and two light/strange-quark masses on E6
and Q4, three light/strange quark masses on D2, and one additional light quark mass on E6, we
measure the masses of all possible mass combinations of pseudoscalar mesons, as well as the
corresponding PCAC quark masses. From the latter, we extract the RGI massMc as described in
[10, 12].

To extract a physical value forMc from these data, we first interpolateMc linearly as a function
of MDs to getMc as a function of the light and strange quark masses. This we treat as a function of
(m2

K − 1
2m2

π), aχPT-inspired proxy of the strange quark mass, and extrapolate to the physical point
(m2

K − 1
2m2

π) = 0.236 (GeV)2 as shown in fig. 1.
Our results areMc = 1694(3)(34) MeV, 1767(15)(35) MeV and 1666(1)(33) MeV on the D2,

E6 and Q4 ensembles, respectively. We note that the lattice spacing dependence (the 1% difference
between the D2 and Q4 ensembles) is small, but the sea quark mass dependence (the 4% difference
between the E6 and D2 ensembles) is noticeable.

5.2 Lattice spacing effects in fDs

To get an estimate of what the lattice spacing effects on the decay constant of theDs are likely
to be, we define an (unphysical) reference point atmref

π = mref
K = 618 MeV,mD = 1968 MeV, to

compare results obtained at different lattice spacings. This point is realized directly on the D2
ensemble, whereL∗ f ref

K = 0.541(16)(11), andL∗ f ref
D = 0.805(12)(16). On the Q4 ensemble, we
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Figure 2: Summary plot showing the dependence of our results on the pion (sea quark) mass, as well as the
HPQCD result [2] and the experimental value [1] for comparison.

need to interpolate inmπ to obtainL∗ f ref
K = 0.578(9)(12)(6) andL∗ f ref

D = 0.797(9)(16)(9). The
errors quoted are from statistics,L∗ scale setting and interpolation, respectively. We find thatlattice
spacing effects are about 7(5)% in f ref

K , but small in f ref
D .

5.3 fDs towards the physical point

To approach the physical point, we take our lightest pion mass, which ismπ = 234(10)(3)

MeV on the E6 ensemble.

As for the quark mass, we interpolate linearly tomDs = 1968 MeV at fixed(m2
K − 1

2m2
π). A

plot of fDs as a function of(m2
K − 1

2m2
π) is shown in fig. 1. Extrapolating to the physical point

(m2
K − 1

2m2
π) = 0.236 (GeV)2, we obtain our preliminary estimate offDs = 257(3)(3)(5)(?), where

the question mark denotes unknown systematic errors, including those coming from the overall
scale ambiguity and the quenching of the strange and charm quarks.

We summarize our preliminary findings forfDs in fig. 2, which illustrates that cutoff effects
are small (at least for heavy pions), and that the light-quark mass dependence is also small (at least
on the coarser lattice). The chiral and continuum extrapolations therefore seem to be well possible.

6. Summary

The CLS effort is now simulating very large and fineNf = 2 lattices, and lattice spacings as
small asa = 0.04 fm have become accessible, making fully relativistic charm quarks feasible. As
simulations are progressing, lighter sea quarks are also being simulated.

5



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
2
7

Ds physics from fine lattices Georg von Hippel

Our preliminary study of theDs system indicates that cutoff effects are small and under control,
but a more precise scale determination is a priority in orderto eliminate an important source of
systematic error.

With better statistics and more sea and valence quark massesto come, we expect to be able to
perform an accurate determination offDs in the near future.
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