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A remnant of supersymmetry on the lattice Georg Bergner

1. Introduction

One of the basic problems of lattice simulations of quantum field theory is the oamin
limit. The specific form of the lattice action governs not only the renormalisatioqractice
it also decides, whether it is possible to approach the continuum thedigienify fast for the
numerical resources at hand.

To preserve or recover the symmetries of the continuum theory is antiespant of the con-
tinuum limit. In some important cases continuum symmetries are necessarilynhmokkee lattice.
This applies in particular to space-time symmetries, as the lattice introduces arbakihy of
the rotational and translational invariance of the continuum. Supersymmeinother example
for this situation that indeed relates to the aforementioned space-time symmetitye @chnical
level this manifests itself in the failure of the Leibniz rule on the lattl¢e [1], whickesat impos-
sible to find a local lattice action preserving the full supersymmetry of an icttegatheory. With
no realisation of supersymmetry at finite lattices, the continuum limit is thus vedytb@ontrol.

Related problems are the representation of the continuum anomalies on thealadtite dif-
ferent possible realisations of symmetry operators on the lattice, whichataail e expected to
lead to the correct continuum limit. The naive realisation of chiral symmetry enatttice, for
example, can only be achieved at the cost of an unwanted doubling oé¢fneed of freedom, as
stated by the Nielsen-Ninomiya theorelh [2]. For symmetries broken on the Jaltticeymmetric
continuum theory may be achieved by fine-tuning the parameters of the.athisrtype of renor-
malisation procedure, however, is numerically rather expensive angdesdnowledge of physical
guantities that should actually be a result of the numerical calculations.

The approach of Ginsparg and Wils¢h [3] to chiral symmetry resolves tiggdining problem
within a renormalisation group setting. The procedure is based on a blactkrapsformation,
i.e. a mapping from the continuum to the lattice (or from a finer lattice to a coarssr This
guarantees the minimal amount of symmetry breaking at each blocking stegdsandnsures a
definite interpretation of the lattice observables in terms of continuum quantitcetha correct
continuum limit. In principle this setting can also be used to calculate an effdattiee action,
but explicit solutions are calculable only in very special cases. It isekiewy possible to obtain
the implications of the continuum symmetries purely on the level of the effectitiedaction:
continuum symmetries are translated into lattice relations that can be intergetefdaned lattice
symmetries. Lattice implementations which obey these relations ensure tha sgmegetries in
the continuum limit. Moreover, the deformed symmetry operators providesthstive correct
realisation of the continuum symmetry on the lattice. Such an approach is ctetalyd to the
renormalisation group studies in the continuum. The lattice is in that case justialsggulator
of the theory and the lattice symmetry relations correspond to the quantum m@sétions or
modified Slavnov-Taylor identities, for a review sg [4].

Here we consider the blocking procedure for general continuum idsewith general lin-
ear symmetrieq [5]. This systematic approach enables us to derive a rétatiattice actions
with remnant lattice (super)symmetry. Locality problems of the naive implementafig¢su-
per)symmetry might be cured by an appropriately chosen blocking terrméeéa a deformed
lattice (super)symmetry. We discuss both quadratic theories, revisiting ifz¢ clse as a peda-
gogical example, as well as interacting theories. Evidently, the main obstrisi¢tipthe solutions
of the symmetry relation will be space-time locality and a polynomial nature in the field
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2. Blocking transformation

The blocking transformation specifies the map from the continuum theorytbattattice.
In particular this map entails how lattice symmetry transformations derive fromdbetinuum
analogues, and which symmetry relation the blocked lattice action has to satisfy.

The first step of the blocking procedure is an averaging of the contirfigds ¢ (x) around
each lattice poinh, done with an averaging functioi{x),

= /dx f(X—Xn) P (X) , (2.1)

that is typically peaked around zero. In this way we have defined as@faddsd, with an integer
lattice indexn. This averaging can easily be extended to more than one dimension.

The second step introduces a blocking matrixhat connects the averaged fieldls to the
lattice fieldsg, via a Gaussian factor,

Sl . /d 1(9-@[@)nanm(9—P[$])m oS (9] 292
e 29 e , :
SDef-/2 ve @2)

which can be read as smearing in field space. It defines a blocked latiice Sg] for a given
continuum actiorg;[¢] and blocking kernetr.

This prescription has a simple interpretatiorf {k — x,) approaches$(x— x,) and the eigen-
values ofa diverge in the continuum limit: then the lattice action becomes the continuum action.
The first demand is actually a necessary one in order to approach ttieucon, sincef governs
the resolution of the lattice. For more genemé one has to investigate the generating functional
with the actionS¢] defined above, because this quantity determines the meaning of the dleserva
in the ¢ theory. Performing Gaussian integrations one gets an exact agreement,

/dqo oS30 _ g-da /d¢ e Sl8]+3%[9] (2.3)

up to theJ-dependent prefactor that can be easily calculated knoaing

The two steps explained above will be investigated w.r.t. their effect on lajtroengtries in
the next two sections. We shall see that for global symmetries such aksymraetry the first
step is trivial. For a general space-time-dependent symmetry, andabkpsapersymmetry, also
the first step is non-trivial and leads to obstructions.

3. Lattice symmetry: the blocked generator ...

Here we consider a continuum acti&q[¢] that is invariant under an infinitesimal continuum
variationd¢' = eMii@l. ¢ is an infinitesimal parameter, bosonic or fermionic, and the superscript
i labels internal indices and species of fields. For example, in the cas@alfssymmetry¢' are
the components of a spinor, aktlis a (global) chiral rotation.

After the averaging stef) (2.1) this symmetry must act only among the discreteléibelled
by n. This means that the transformation must be ‘pulled outside’ of the averpgiegdure as

/dx f(x—xn) EMU @I (x) = eMl] D [p]] = eM]] /dxfx Xm) @) (x) Vél(x), (3.1)

to arrive at a lattice transformatidvi and the corresponding variatidg, = eMnm(nn
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It is trivial to computeM for a symmetry that acts only on multiplet indices ahd](3.1) was
therefore not taken into account in the discussions of chiral symmetmgingtavith a continuum
transformation this procedure defines a corresponding lattice couritefdate, however, that
for space-time dependent symmetries one cannot find sush fam everyM and f. Then (3.1)
constitutes an additional constraint fdr M and f and is not a mere definition &f. This applies
in particular to the derivative operator in the continuum supersymnétrgt problem to which
we will come back in sectiof] 6.

We conclude that an invariance under the naive symmetry transformatjpisshe first guess
for the resulting lattice symmetry. However, in order to calculate the full effethe blocking on
the symmetry one must also include the blocking matrixs done in the next section.

4. ...and the symmetry relation

The symmetry relation for the lattice action is derived from applying an infinitdsiraas-
formation on the lattice fieldsp in (£.4). This transformation can be absorbed within a symmetry
transformation of the continuum fielgson the rhs. of2) using the additional constraint. More
details of the calculation can be found [h [5]. We finally arrive at the follgielation

M i 9 _ (a1 (55_53._5.25 ) 4 (STM — STA) . 4.1)
o, Sphod  dahddg,
The trace part STV takes care of an infinitesimal change of the measigrehence the last term
represents the difference between continuum and lattice anomalies.
The relation [4]1) entails the deformation of the continuum symmetry on the latticedbe
chosen blocking kernet ~. For symmetric blocking kernels the rhs. §f {4.1) vanishes and the
lattice theory respects the symmetry generateMbyS= eM@dS/d¢ = 0. More specifically, a

symmetric partig* does not contribute td (4.1) if it satisfies
Magl+(Magh)T =0 (4.2)

(the minus sign applies when the symmetry transforms fermions into fermions}hérefore the
symmetry breaking part of the blocking kernel that is responsible for ifferehce between the
naive and the deformed lattice symmetry, by generating non-linear terms dmsthef (4.1). We
emphasise that the averaging functigrwhich is a key ingredient of the mapping onto the lattice,
appears in this relation only in terms of the naive lattice symmetry opdvator

5. Quadratic lattice actions and chiral symmetry

To achieve a better understanding of the above relatioh (4.1), we disousise simplest case
of quadratic actions. Although this seems to be a rather trivial case, idglireludes the well
known Ginsparg-Wilson (GW) relation for chiral symmetry. There the Daetion, relevant for
this symmetry, is quadratic for a given gauge background.

Evaluating our relation[(4.1) for a quadratic lattice actisg: %(p,gK,H‘m(n{1 we obtain a matrix
equation from the terms quadratic in the fields (for the field-independet part see[]5]),

MTK+(MTK)T =KT(Ma HTK + (KT (Ma H)TK)T . (5.1)

Again, the minus sign applies when the symmetry transforms fermions into fermions

1This constraint has been mentioned without further investigaticﬂ in [6].
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Now we discuss the specific case of chiral symmetry with symmetry opévatdr~ s and
the simplest blocking kernet,,, = %5nm, that is diagonal in lattice sites and indeed diverging in
the continuum limit. Then the matrix reIatioIﬂS.l) is nothing but the Ginsparg-Wilstation
{y5,D} = aDyD [B]. Furthermore[(5]1) can be rewritten as

MK = (MdeK)T =0, with Mgef=M(1—aK). (5.2)

Eq. (5.2) entails the invariance of the action under a transformation gedeérgMger. In other
words, the invariance of the continuum action always implies an invariahtteedattice action.
There are, however, other conditions fdges to qualify as a lattice symmetry: ClearMges has
to approach its continuum counterpart in the continuum limit. Furthernhyg,must be local to
define a proper lattice symmetry, in order to have lattice artefacts of the symuametey control in
the continuum limit. For non-local lattice artefacts the continuum limit is at stakecaielude
that the freedom to choose a blocking kernel must be utilised to find a leéainded symmetry.
We will denote only invariances satisfying the conditions explained abolatae symmetry. In
turn, non-local invariances should not be seen as lattice symmetries.

In the case of chiral symmetry with blocking kerngl,, = %énm one arrives at deformed
's, now depending on the Dirac operator and hence the backgroudddie[ff]. The locality
conditions excludes for instance Wilson fermions as a solution for the cyimimetry. Indeed,
locality is the main issue about solutions of the Ginsparg-Wilson relation. Thidemn already
occurs for quadratic theories and we will face it again for supersymrbeto.

6. A derivative operator for lattice super symmetry

Now we return to the additional constraiht {3.1) wifhcontaining the derivative operator, as is
the case for supersymmetry. The constraint entails, that the averagpestide of any continuum
field must be represented by a linear combination of averaged fields livingpeo lattice sites
only. The corresponding coefficients constitute the lattice derivativeatgre]. On the averaging
function f itself and transformed into Fourier-space the constraint reads

=0 6
Eq. ) can only be satisfied if for all momergaeither the Fourier component of the averaging
function, f(px), or the difference between the continuum and the lattice derivative topesn-
ishes. Iff (px) vanishes only outside the first Brillouin zone, the only solutiorifas the non-local
SLAC-derivative [B], which can nevertheless be useful in some low dieeal models[f9].

If f(px) also vanishes for momenta inside the first Brillouin zone, other lattice demvati
operators are allowed, but the averaging functighen introduces an effective cutoff belowr2a
[B]. From a blocking perspective then generates less independent blocked fields than present on
the lattice. Note also that the non-local derivative operator does nessagly appear in the action

or the lattice symmetry operator, it is just included in the naive lattice transfomsadio

. 2n .
[O(p) —ipd F(m) =0 Vpe="k, keZ, with O(p+

7. Freesupersymmetry

Now we have all ingredients to discuss supersymmetry on the lattice. For simpliitpn-
sider supersymmetric quantum mechanics (SUSYQM). For supersymmedantugu mechanics
the continuum multiple$ consists of bosonic fieldg andF (the latter being non-dynamical) plus
fermionic fieldsy and(, which are transformed into each other under supersymmetry.
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The field content on the lattice and the naive lattice transformations

X 0 0 —-¢ ¢ 0}
F 0 0 —eO —&0O F — =i

_ = (eM+eM)!_ql 7.1
g e —¢ O 0 g

nm m

are analogous to the continuum ones. The infinitesimal parametarde are Grassmannian and
the SLAC-derivativel], replaces the continuum derivative as discussed above. As a bansatz,
the quadratic (off-shell) lattice action has the kernel

—Unm —Mpnm 0 0

i —Mynm  —lnm 0 0
Ki —a : - . 7.2

0 0 (O+ms)nm 0

Translation invariance demands that all of these matrices are circulant,eyecdmmute. The
matricesl, [J, m, + are symmetric, whereds is antisymmetric and in the continuum limit they
need to approach B2, mandad, respectively.

Together with the blocking kernel, these matrices are subject to our rel&ibn (First we
notice that a vanishing —1, or a symmetric one according to efg. {4.2), yields a deformed symmetry
equal to the naive one. These are non-local due to the presenceSifAlzoperator.

Hence we must use a nontrivial blocking kernel for generating local dsgiitions with local
symmetries. First we choose diagonal in lattice indices, as for the Ginsparg-Wilson rela-
tion, and — due to symmetry reasons — symmetric in the bosonic sector and antisignimmie
fermionic sector. A solution of the coefficient matrices in the actjor] (7.2) in texfntise block-
ing kernel and the SLAC-derivativé is possible and non-trivial, sefd [5]. In particular, the lattice
derivative (] in the action is proportional t@l with a prefactor similar to a massive propagator
(const? — 02)~1. In the continuum similar expressions lead to an exponential decay fa larg
distances. On the lattice, however, the corresponding behaviour is lspadtms decaying only
algebraically, exactly becauseis finite at the boundary of the first Brillouin zon@ [5].

Since the blocking kernet has no direct physical implication, we now adjast! according
to a local action and local deformed supersymmetry. With a general ansdzd and after some
computations we are left with a relatigh= | [B]. As 0 and| appear in the lattice action and
in the deformed symmetry, they must be local. This implies thanishes together with all its
derivative at the boundary of the Brillouin zone. In this delicate way aylet the Dirac operator
0 stronger than algebraic (but not exponential) can be achieved.

8. Interacting systems

One of the important properties of our symmetry relatibnl (4.1) is its validity foraateng
theories. Therefore, we can embark on constructing a local interactpegs/mmetric theory on
the lattice in our approach.

Beyond second order, however, the non-linearity of this relation stagtayoan important
role. Since it connects different orders of fields, solutions of the synymelation are generically
non-polynomial. This is not unexpected since the blocked action is coniparabn effective
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action. In order to truncate the tower of interactions, a necessary congitfim matrix notation)

LERWTL
29 29

whereS"® denotes the part of the action with the maximal order in the fields. This means that

this highestS"® does not depend on the entire field multiplet. For SUSY, a purely boS3Ritc

suffices a#M mixes bosons with fermions. We have illustrated this peculiar situation by virtase of

exact solution of interacting SUSYQM restricted to constant fields, whiplemiding on the choice

of a is either logarithmic or polynomia(][5], for chiral theories s@€| [10]. Wesstréhat eq.[(8 1)

represents only one relation of those that follow from our relafion (4. Bnardered according to

the powers of fields.

~0, (8.1)

9. Summary

In this brief survey we have shown that symmetries of a continuum action ineplgin rela-
tions for the corresponding lattice action. For general linear symmetriesaondeduce a deformed
symmetry relation for the lattice theorly (#.1) that is a generalisation of the sth@da-relation.

However the construction of lattice symmetry operators for space-time depesymmetries
is subject to the obstructiop (.1). This constraint reflects the necessitgdagile the averaging
procedure of the blocking with the space-time structure of the symmetrypgRoegime dependent
symmetries it is non-trivial, which applies in particular to derivative-depehdymmetries such
as supersymmetry, seb (6.1), where we are led to the non-local SL@tde in the lattice
symmetry operator.

For well-defined symmetry operators on the lattice we have to require thatthetlattice
operatorMges and the corresponding lattice action are local. For non-Itg&k and/or lattice
actions the fate of the symmetry in the continuum limit is unclear as lattice artefactssuigive.

Within this setting we have discussed supersymmetric theories at the exampileeo$yan-
metric quantum mechanics. We have shown that solutions can be achieves @agh with a
quadratic action as well as in interacting theories. Although the symmetry re(@@ncouples
different orders of the fields, even for interacting theories polynonoiati®ns might be possible.
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