
P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
3
0

Generalisations of the Ginsparg-Wilson relation and
a remnant of supersymmetry on the lattice

Georg Bergner∗

Theoretisch-Physikalisches Institut, Universität Jena,D-07743 Jena, Germany
E-mail: g.bergner@tpi.uni-jena.de

Falk Bruckmann
Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
E-mail: falk.bruckmann@physik.uni-regensburg.de

Jan M. Pawlowski
Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany
E-mail: j.pawlowski@thphys.uni-heidelberg.de

We introduce a lattice symmetry relation for field theories with general linear symmetries. For

chiral symmetry the well-known Ginsparg-Wilson relation is reproduced. The new relation en-

codes the remnant of the original symmetry on the lattice andguides the construction of invariant

lattice actions. We apply this approach to lattice supersymmetry. There, an additional constraint

has to be satisfied which originates in the derivative operator in the symmetry transformations.

As a consequence the non-local SLAC derivative operator appears in the lattice transformation.

Despite this non-local form we show how local solutions for quadratic actions can be found. For

interacting theories the relation in general leads to a non-polynomial action that can be reduced

to a finite polynomial order only under certain conditions.

The XXVI International Symposium on Lattice Field Theory
July 14-19 2008
Williamsburg, Virginia, USA

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:g.bergner@tpi.uni-jena.de
mailto:falk.bruckmann@physik.uni-regensburg.de
mailto:j.pawlowski@thphys.uni-heidelberg.de


P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
3
0

A remnant of supersymmetry on the lattice Georg Bergner

1. Introduction

One of the basic problems of lattice simulations of quantum field theory is the continuum
limit. The specific form of the lattice action governs not only the renormalisation;in practice
it also decides, whether it is possible to approach the continuum theory sufficiently fast for the
numerical resources at hand.

To preserve or recover the symmetries of the continuum theory is an essential part of the con-
tinuum limit. In some important cases continuum symmetries are necessarily broken on the lattice.
This applies in particular to space-time symmetries, as the lattice introduces a hard breaking of
the rotational and translational invariance of the continuum. Supersymmetry isanother example
for this situation that indeed relates to the aforementioned space-time symmetry. On the technical
level this manifests itself in the failure of the Leibniz rule on the lattice [1], which makes it impos-
sible to find a local lattice action preserving the full supersymmetry of an interacting theory. With
no realisation of supersymmetry at finite lattices, the continuum limit is thus very hard to control.

Related problems are the representation of the continuum anomalies on the latticeand the dif-
ferent possible realisations of symmetry operators on the lattice, which can not all be expected to
lead to the correct continuum limit. The naive realisation of chiral symmetry on the lattice, for
example, can only be achieved at the cost of an unwanted doubling of the degrees of freedom, as
stated by the Nielsen-Ninomiya theorem [2]. For symmetries broken on the lattice, the symmetric
continuum theory may be achieved by fine-tuning the parameters of the action. This type of renor-
malisation procedure, however, is numerically rather expensive and requires knowledge of physical
quantities that should actually be a result of the numerical calculations.

The approach of Ginsparg and Wilson [3] to chiral symmetry resolves this fine-tuning problem
within a renormalisation group setting. The procedure is based on a block spin transformation,
i.e. a mapping from the continuum to the lattice (or from a finer lattice to a coarserone). This
guarantees the minimal amount of symmetry breaking at each blocking step andalso ensures a
definite interpretation of the lattice observables in terms of continuum quantities and the correct
continuum limit. In principle this setting can also be used to calculate an effectivelattice action,
but explicit solutions are calculable only in very special cases. It is, however, possible to obtain
the implications of the continuum symmetries purely on the level of the effective lattice action:
continuum symmetries are translated into lattice relations that can be interpreted as deformed lattice
symmetries. Lattice implementations which obey these relations ensure the correct symmetries in
the continuum limit. Moreover, the deformed symmetry operators provides us with the correct
realisation of the continuum symmetry on the lattice. Such an approach is closelyrelated to the
renormalisation group studies in the continuum. The lattice is in that case just a special regulator
of the theory and the lattice symmetry relations correspond to the quantum master equations or
modified Slavnov-Taylor identities, for a review see [4].

Here we consider the blocking procedure for general continuum theories with general lin-
ear symmetries [5]. This systematic approach enables us to derive a relationfor lattice actions
with remnant lattice (super)symmetry. Locality problems of the naive implementationof (su-
per)symmetry might be cured by an appropriately chosen blocking term leading to a deformed
lattice (super)symmetry. We discuss both quadratic theories, revisiting the chiral case as a peda-
gogical example, as well as interacting theories. Evidently, the main obstructions for the solutions
of the symmetry relation will be space-time locality and a polynomial nature in the fields.
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2. Blocking transformation

The blocking transformation specifies the map from the continuum theory ontothe lattice.
In particular this map entails how lattice symmetry transformations derive from their continuum
analogues, and which symmetry relation the blocked lattice action has to satisfy.

The first step of the blocking procedure is an averaging of the continuumfieldsϕ(x) around
each lattice pointn, done with an averaging functionf (x),

Φn[ϕ] :=
∫

dx f(x−xn)ϕ(x) , (2.1)

that is typically peaked around zero. In this way we have defined averaged fieldsΦn with an integer
lattice indexn. This averaging can easily be extended to more than one dimension.

The second step introduces a blocking matrixα that connects the averaged fieldsΦn to the
lattice fieldsφn via a Gaussian factor,

e−S[φ ] :=
1

SDet1/2 α

∫

dϕ e−
1
2(φ−Φ[ϕ])nαnm(φ−Φ[ϕ])m e−Scl[ϕ] , (2.2)

which can be read as smearing in field space. It defines a blocked lattice action S[φ ] for a given
continuum actionScl[ϕ] and blocking kernelα .

This prescription has a simple interpretation iff (x−xn) approachesδ (x−xn) and the eigen-
values ofα diverge in the continuum limit: then the lattice action becomes the continuum action.
The first demand is actually a necessary one in order to approach the continuum, sincef governs
the resolution of the lattice. For more generalα ’s one has to investigate the generating functional
with the actionS[φ ] defined above, because this quantity determines the meaning of the observables
in theφ theory. Performing Gaussian integrations one gets an exact agreement,

∫

dφ e−S[φ ]+Jφ = e−Jα−1J
∫

dϕ e−Scl[ϕ]+JΦ[ϕ] , (2.3)

up to theJ-dependent prefactor that can be easily calculated knowingα .
The two steps explained above will be investigated w.r.t. their effect on lattice symmetries in

the next two sections. We shall see that for global symmetries such as chiral symmetry the first
step is trivial. For a general space-time-dependent symmetry, and especially supersymmetry, also
the first step is non-trivial and leads to obstructions.

3. Lattice symmetry: the blocked generator . . .

Here we consider a continuum actionScl[ϕ] that is invariant under an infinitesimal continuum
variationδ̃ϕ i = εM̃i j ϕ j . ε is an infinitesimal parameter, bosonic or fermionic, and the superscript
i labels internal indices and species of fields. For example, in the case of chiral symmetryϕ i are
the components of a spinor, and̃M is a (global) chiral rotation.

After the averaging step (2.1) this symmetry must act only among the discrete fields labelled
by n. This means that the transformation must be ‘pulled outside’ of the averagingprocedure as

∫

dx f(x−xn) εM̃i j ϕ j(x) = εMi j
nmΦm[ϕ j ] = εMi j

nm

∫

dx f(x−xm)ϕ j(x) ∀ϕ j(x) , (3.1)

to arrive at a lattice transformationM and the corresponding variationδφ i
n = εMi j

nmφ j
m.
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It is trivial to computeM for a symmetry that acts only on multiplet indices and (3.1) was
therefore not taken into account in the discussions of chiral symmetry. Starting with a continuum
transformation this procedure defines a corresponding lattice counterpart. Note, however, that
for space-time dependent symmetries one cannot find such anM for everyM̃ and f . Then (3.1)
constitutes an additional constraint forM̃,M and f and is not a mere definition ofM. This applies
in particular to the derivative operator in the continuum supersymmetryM̃, a problem1 to which
we will come back in section 6.

We conclude that an invariance under the naive symmetry transformationsδφ is the first guess
for the resulting lattice symmetry. However, in order to calculate the full effect of the blocking on
the symmetry one must also include the blocking matrixα as done in the next section.

4. . . . and the symmetry relation

The symmetry relation for the lattice action is derived from applying an infinitesimal trans-
formation on the lattice fields,φ in (2.2). This transformation can be absorbed within a symmetry
transformation of the continuum fieldsϕ on the rhs. of (2.2) using the additional constraint. More
details of the calculation can be found in [5]. We finally arrive at the following relation

Mi j
nmφ j

m
δS
δφ i

n
= (Mα−1)i j

nm

(

δS

δφ j
m

δS
δφ i

n
−

δ 2S

δφ j
mδφ i

n

)

+
(

STrM−STrM̃
)

. (4.1)

The trace part STr̃M takes care of an infinitesimal change of the measuredϕ, hence the last term
represents the difference between continuum and lattice anomalies.

The relation (4.1) entails the deformation of the continuum symmetry on the lattice due to the
chosen blocking kernelα−1. For symmetric blocking kernels the rhs. of (4.1) vanishes and the
lattice theory respects the symmetry generated byM, δS= εMφδS/δφ = 0. More specifically, a
symmetric partα−1

S does not contribute to (4.1) if it satisfies

Mα−1
S ± (Mα−1

S )T = 0 (4.2)

(the minus sign applies when the symmetry transforms fermions into fermions). Itis therefore the
symmetry breaking part of the blocking kernel that is responsible for the difference between the
naive and the deformed lattice symmetry, by generating non-linear terms on therhs. of (4.1). We
emphasise that the averaging functionf , which is a key ingredient of the mapping onto the lattice,
appears in this relation only in terms of the naive lattice symmetry operatorM.

5. Quadratic lattice actions and chiral symmetry

To achieve a better understanding of the above relation (4.1), we discussit in the simplest case
of quadratic actions. Although this seems to be a rather trivial case, it already includes the well
known Ginsparg-Wilson (GW) relation for chiral symmetry. There the Diracaction, relevant for
this symmetry, is quadratic for a given gauge background.

Evaluating our relation (4.1) for a quadratic lattice action,S= 1
2φ i

nK i j
nmφ j

m, we obtain a matrix
equation from the terms quadratic in the fields (for the field-independent trace part see [5]),

MTK± (MTK)T = KT(Mα−1)TK± (KT(Mα−1)TK)T . (5.1)

Again, the minus sign applies when the symmetry transforms fermions into fermions.

1This constraint has been mentioned without further investigation in [6].
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Now we discuss the specific case of chiral symmetry with symmetry operatorM̃,M ∼ γ5 and
the simplest blocking kernelαnm = 1

aδnm, that is diagonal in lattice sites and indeed diverging in
the continuum limit. Then the matrix relation (5.1) is nothing but the Ginsparg-Wilsonrelation
{γ5,D} = aDγ5D [3]. Furthermore (5.1) can be rewritten as

MT
defK± (MT

defK)T = 0 , with Mdef = M(1−α−1K) . (5.2)

Eq. (5.2) entails the invariance of the action under a transformation generated byMdef. In other
words, the invariance of the continuum action always implies an invariance of the lattice action.
There are, however, other conditions forMdef to qualify as a lattice symmetry: ClearlyMdef has
to approach its continuum counterpart in the continuum limit. Furthermore,Mdef must be local to
define a proper lattice symmetry, in order to have lattice artefacts of the symmetryunder control in
the continuum limit. For non-local lattice artefacts the continuum limit is at stake. Weconclude
that the freedom to choose a blocking kernel must be utilised to find a local deformed symmetry.
We will denote only invariances satisfying the conditions explained above aslattice symmetry. In
turn, non-local invariances should not be seen as lattice symmetries.

In the case of chiral symmetry with blocking kernelαnm = 1
aδnm one arrives at deformed

γ5’s, now depending on the Dirac operator and hence the background field, cf. [7]. The locality
conditions excludes for instance Wilson fermions as a solution for the chiralsymmetry. Indeed,
locality is the main issue about solutions of the Ginsparg-Wilson relation. This problem already
occurs for quadratic theories and we will face it again for supersymmetrybelow.

6. A derivative operator for lattice supersymmetry
Now we return to the additional constraint (3.1) withM̃ containing the derivative operator, as is

the case for supersymmetry. The constraint entails, that the averaged derivative of any continuum
field must be represented by a linear combination of averaged fields living on the lattice sites
only. The corresponding coefficients constitute the lattice derivative operator∇. On the averaging
function f itself and transformed into Fourier-space the constraint reads

[∇(pk)− ipk] f (pk) = 0 ∀pk =
2π
L

k , k∈ Z , with ∇(p+
2π
a

) = ∇(p) . (6.1)

Eq. (6.1) can only be satisfied if for all momentapk either the Fourier component of the averaging
function, f (pk), or the difference between the continuum and the lattice derivative operator van-
ishes. If f (pk) vanishes only outside the first Brillouin zone, the only solution for∇ is the non-local
SLAC-derivative [8], which can nevertheless be useful in some low dimensional models [9].

If f (pk) also vanishes for momenta inside the first Brillouin zone, other lattice derivative
operators are allowed, but the averaging functionf then introduces an effective cutoff below 2π/a
[5]. From a blocking perspectivef then generates less independent blocked fields than present on
the lattice. Note also that the non-local derivative operator does not necessarily appear in the action
or the lattice symmetry operator, it is just included in the naive lattice transformationsM.

7. Free supersymmetry
Now we have all ingredients to discuss supersymmetry on the lattice. For simplicitywe con-

sider supersymmetric quantum mechanics (SUSYQM). For supersymmetric quantum mechanics
the continuum multipletϕ consists of bosonic fieldsχ andF (the latter being non-dynamical) plus
fermionic fieldsψ andψ̄, which are transformed into each other under supersymmetry.
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The field content on the lattice and the naive lattice transformations

δ











χ
F
ψ
ψ̄











n

=











0 0 −ε̄ ε
0 0 −ε̄∇ −ε∇

−ε∇ −ε 0 0
ε̄∇ −ε̄ 0 0











nm











ϕ
F
ψ
ψ̄











m

= (εM + ε̄M̄)i j
nmφ j

m, (7.1)

are analogous to the continuum ones. The infinitesimal parametersε andε̄ are Grassmannian and
the SLAC-derivative,∇, replaces the continuum derivative as discussed above. As a general ansatz,
the quadratic (off-shell) lattice action has the kernel

K i j
nm = a











−�nm −mb,nm 0 0
−mb,nm −Inm 0 0

0 0 0 (∇̂−mf )nm

0 0 (∇̂+mf )nm 0











. (7.2)

Translation invariance demands that all of these matrices are circulant, i.e. they commute. The
matricesI , �, mb, f are symmetric, whereaŝ∇ is antisymmetric and in the continuum limit they
need to approach 1,∂ 2, mand∂ , respectively.

Together with the blocking kernel, these matrices are subject to our relation (5.1). First we
notice that a vanishingα−1, or a symmetric one according to eq. (4.2), yields a deformed symmetry
equal to the naive one. These are non-local due to the presence of theSLAC operator.

Hence we must use a nontrivial blocking kernel for generating local lattice actions with local
symmetries. First we chooseα−1 diagonal in lattice indices, as for the Ginsparg-Wilson rela-
tion, and – due to symmetry reasons – symmetric in the bosonic sector and antisymmetric in the
fermionic sector. A solution of the coefficient matrices in the action (7.2) in termsof the block-
ing kernel and the SLAC-derivative∇ is possible and non-trivial, see [5]. In particular, the lattice
derivative∇̂ in the action is proportional to∇ with a prefactor similar to a massive propagator
(const.2 −∇2)−1. In the continuum similar expressions lead to an exponential decay for large
distances. On the lattice, however, the corresponding behaviour is spoiltby terms decaying only
algebraically, exactly because∇ is finite at the boundary of the first Brillouin zone [5].

Since the blocking kernelα has no direct physical implication, we now adjustα−1 according
to a local action and local deformed supersymmetry. With a general ansatz for Mdef and after some
computations we are left with a relation̂∇ = I∇ [5]. As ∇̂ and I appear in the lattice action and
in the deformed symmetry, they must be local. This implies thatI vanishes together with all its
derivative at the boundary of the Brillouin zone. In this delicate way a decay of the Dirac operator
∇̂ stronger than algebraic (but not exponential) can be achieved.

8. Interacting systems

One of the important properties of our symmetry relation (4.1) is its validity for interacting
theories. Therefore, we can embark on constructing a local interacting supersymmetric theory on
the lattice in our approach.

Beyond second order, however, the non-linearity of this relation starts toplay an important
role. Since it connects different orders of fields, solutions of the symmetry relation are generically
non-polynomial. This is not unexpected since the blocked action is comparable to an effective
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action. In order to truncate the tower of interactions, a necessary condition is (in matrix notation)

∂Smax

∂φ
Mα−1∂Smax

∂φ
= 0 , (8.1)

whereSmax denotes the part of the action with the maximal order in the fields. This means that
this highestSmax does not depend on the entire field multiplet. For SUSY, a purely bosonicSmax

suffices asM mixes bosons with fermions. We have illustrated this peculiar situation by virtue ofan
exact solution of interacting SUSYQM restricted to constant fields, which depending on the choice
of α is either logarithmic or polynomial [5], for chiral theories see [10]. We stress that eq. (8.1)
represents only one relation of those that follow from our relation (4.1) when ordered according to
the powers of fields.

9. Summary
In this brief survey we have shown that symmetries of a continuum action imply certain rela-

tions for the corresponding lattice action. For general linear symmetries onecan deduce a deformed
symmetry relation for the lattice theory (4.1) that is a generalisation of the standard GW-relation.

However the construction of lattice symmetry operators for space-time dependent symmetries
is subject to the obstruction (3.1). This constraint reflects the necessity to reconcile the averaging
procedure of the blocking with the space-time structure of the symmetry. For space-time dependent
symmetries it is non-trivial, which applies in particular to derivative-dependent symmetries such
as supersymmetry, see (6.1), where we are led to the non-local SLAC-derivative in the lattice
symmetry operator.

For well-defined symmetry operators on the lattice we have to require that both, the lattice
operatorMdef and the corresponding lattice action are local. For non-localMdef and/or lattice
actions the fate of the symmetry in the continuum limit is unclear as lattice artefacts might survive.

Within this setting we have discussed supersymmetric theories at the example of supersym-
metric quantum mechanics. We have shown that solutions can be achieved in this case with a
quadratic action as well as in interacting theories. Although the symmetry relation(4.1) couples
different orders of the fields, even for interacting theories polynomial solutions might be possible.
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