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1. Introduction

It seems impossible to put the SUSY on the lattice, becausgYSiligebra contains infinitesi-
mal translation but on the lattice we have only finite tramsies. However, what we have realized
in the recent development is that it is possible to formukatpersymmetric models on the lat-
tice if .4~ > 2. Lots of lattice models especially for super Yang-Mille &nown along this line
[1, 2, 3, 4, 5] and relations among them have become clear, [8]. # Most of these formula-
tions utilize the topological twist. After the twist, we ea scalar supercharge instead of spinors.
We can put the scalar on a lattice site and keep it exactly i fistice spacing. Some of the
simulation have already done aiming the check of the fortiarig13, 14, 15F

In this talk we report our simulation with dynamical fermgand its application. We utilize
the Rational Hybrid Monte Carlo algorithm [19]. The targetael is two-dimensional/” = (2,2)
super Yang-Mills model based on a formulation with one dyaatpt supersymmetry proposed
by Sugino [2]. As an application of the simulation, we measihe ground state energy which is
useful to observe dynamical SUSY breaking. We also sketetmtéthod of observing dynamical
SUSY breaking which we proposed in [20, 21].

2. Lattice Moddl

The target theory in the continuum ha = (2,2) twisted supersymmetry. After the twist we
have four supercharges, one from a sc@awo from a two-dimensional vectdQo, Q1), and one
from a pseudo scal&. The following is a part of the twisted SUSY algebra:

Q*= g%, Q= oo, [Q.Qo} = 2do+255%,  (2.1)

where 3929 denotes an infinitesimal gauge transformation with the rpatere. The super-
charges are nilpotent up to gauge transformation. Therai@iQ-exact and because of the nilpo-
tency,Q-invariance is manifest.

On the lattice, we keep the scal@rexactly. The followingQ transformation on the lattice
keeps the nilpotency even at the finite lattice spacing [2]:

QU (X M) =i (XU (X, 1),  Qu(X) =iy (X) Py —i (‘P(X) —U (X, 1) @p(x+ ﬁ)U (Xaﬂ)il)a
Qo(x) =0,
QX (x) = H(X), QH(X) = [@(x), X (X)],
Qe(x) = n(x), QN (x) = [@(x), p(x)],

whereU (x, i) is a gauge link variable, scalar fielgsg and auxiliary fieldH are defined on the
sites, fermions in the twisted basjsx, ¢/, are defined on the sites. The action is defineQ-&xact

1For the review, see [9].
2For recent developments in keeping whole supersymmetmtlg»@n the lattice, see [10, 11]; See also [12].
3See [16, 17, 18] for interesting attempts towards simufeiticthree and four dimensions.



RHMC simulation of two-dimensional N=(2,2) super Yang-Millswith exact supersymmetry
Issaku Kanamori

as in the continuum case:
S=Qpcz 3 1 XOH(0 + 300910100, 909] - X (XD
+i % {Wu () (@) —U (x, ) @(x+af)u (x, 1)) }
u=0,1
:az—:;ZZtr[%ébTL(x)2+... s

U(x,0,1) —U(x,0,1)~*
A 1-1]1-U(x,0,1)|]2/€?’
part of ® andU (x,0,1) is the usual plaquette variable. We impose the admissilglindition
[|11-U(x,0,1)|| < € for a constante in order to kill artifact vacua. Because of the nilpotency
and Q-exactness, the action is manifesfyinvariant at the finite lattice spacing. The other three
superchargesQp, Q1 and Q, will be automatically restored in the continuum limit asdpas a
perturbative power counting is valid.

whereg is the dimensionful gauge coupliri@(x) = ®r is the traceless

3. Simulation Details

Since fermions play an important role in supersymmetry ffeceof the dynamical fermion
is crucial. We use the Rational Hybrid Monte Carlo algorithbhe path integration of the fermion
gives Pfaffian of the Dirac operat@, which contains the Yukawa interaction terms as well. We
rewrite the Pfaffian using pseudo fermion integration witianal function. Symbolically, contri-
/ P eXp—Stermion) — Pf(D) = / IF exp(—F1(D'D) V4F)

bution from the fermionic part of the actidrmion becomes
t d Gl
= | 9Fexp| —F +Sy ——|F ], 3.1
/ P 40 i; DTD + by 31)

wheref is the fermion,F the pseudo fermiorD) the Dirac operatorg; andb; are numerical con-
stants' Here we ignore a phase factor of the PfaffiaitPfbecause it is almost 1 (i.e., almost
real and positive) in the current model. If it is needed we Maaweight this phase factor in the
measurements. We also utilize the multi time step evolutiaine molecular dynamics [23]. We
calculate forces fronermion €very several calculations of forces from the other parhefdction.
We evolve pseudo fermioR as well as other bosonic fieldi(x, (), @ and @ in the molecular
dynamics.

The parameters we use are the following. We set the gauge gooBJ (2) and € for the
admissibility condition to B.° The lattice size is % 12-30x 10 and the lattice spacing &) =
0.07071-02357. The degree of the rational approximation is typically The length of time
evolution in the molecular dynamics in each trajectory iedixo 05. We store the configurations
every 10 trajectories. We keep the acceptance in the Mdisdpst to be greater than& Because

4We use a program from [22] to obtain andb;.
5The possible maximum value feris 2\/2 = 2.8284.. in L (2) case.
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of the flat directions in the scalar potential which will bedissed later, and since the magnitude
of the molecular dynamical force depends on the magnitudbeokcalar fields, the acceptance
fluctuates during the simulatiéh.The magnitude of the scalar fields tends to be larger and the
acceptance tends to be smaller as the simulation runs. Sedalble 1 for the parameters and
number of configurations we use in the application.

4. Application: observing dynamical SUSY breaking

What can we do with this simulation? We use it to observe theathical SUSY breaking
using a method we proposed in [20, 21]. The requirement #idattice model in the method is
that it should have nilpoter® and exact-invariance, which the current model satisfies. Since the
SUSY is not broken in the perturbation if it is not broken ia thee level, a way of observing SUSY
breaking due to non-perturbative effects is very importatsually, the Witten index provides such
amethod but in this system, two-dimension#l = (2,2) pure super Yang-Mills, it is not available.
What we know without numerical simulations is an argumentHayi and Tong that SUSY is
probably spontaneously broken in this system [24].

What we measure is the ground state energy using the Harait@s the order parameter.
As well known, vacuum expectation value of the Hamiltoniarzéro if and only if the SUSY is
not broken. The advantage of using the Hamiltonian is thagtires one-point function which is
numerically much less expensive than two-point function.

Since we are interested in that it is zero or not, the correaice of the origin of the Hamilto-
nian is crucial. We use the SUSY algebra to define the HanidltonWe regard the anti-commutator
in (2.1) as follow:

Q7Y =27, (4.1)

that is, Q transformation of the 0-th component of the Noether curcemtespondingQg, /0(0),
gives the Hamiltonian densityZ. On the lattice we have onlQ transformation but n@) trans-
formation. Therefore, we discretize the continuum versibtihe Noether current by hand. We use
the following as the 0-th component of the current @y

—tr{n(x)[cp(x>, PO+ 2X(OH (X
~ 2ig() (PX) — U (. 0)@(x+ad)U (x,0) 1)

+ 2y () (@(x) —U (x, 1) (x+ al)u(x, Ay } (4.2)

Since we know th€ transformation on the lattice so it is straightforward teeatp the Hamiltonian.

Another point is the boundary condition. As usual methoddioserving spontaneous sym-
metry breaking, we apply an external field conjugate to tlikeloparameter. The conjugate to the
Hamiltonian is the temperature. That is, we impose the @ariiedic condition in the time direction
for fermion. Therefore we break SUSY by boundary conditioequivalently by the temperature.
Then we take zero temperature limit and see the effect ofréaking is left or not.

6This is for the case in which we impose anti-periodic boupdamdition in time direction for fermions. In the
periodic case, the flat direction is lifted so that we do natevbee such fluctuations of the acceptance.
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Figure 1: Expectation value of the HamiltonianFigure 2: Expectation value of the Hamiltonian

for supersymmetric quantum mechanics versus idensity for super Yang-Mills versus inverse tem-
verse temperaturB. All quantities are measuredperature. All quantities are measured in unit of

in a dimensionful parameten in the potential. dimensionful gauge coupling

As a check of the method, we first investigate supersymmgtidntum mechanics. The known
fact is that the form of potential decides whether SUSY ikbroor not. We use a lattice model
given in [25], which has nilpoten@ and Q-exact action. The details of the measurement and
forms of the potential are found in [21]. Here we only showufe1, from which we can easily
distinguish SUSY broken case and not-broken case. Our mieittoally works as expected.

Next let us investigate the super Yang-Mills case. Figurd@s the result. We put the
statistical errors only in the plot. Although we can not dergossibility of non-zero small ground
state energy that means breaking of the SUSY, the plot shmvwealue of the ground state energy
is small and close to zero. We need to take a limit of the imvéemperaturgd — oo but the plot
implies that thg3 we use is enough large since the expectation value of theltdaman density is
almost saturated. Note that all quantities are measuréetidimensionful gauge couplirgg Some
details of the measurement is in order. We fix the physicaliapsizeLs = 1.41/g. We discard first
20,000-30,000 trajectories as thermalization. We cdleutee Hamiltonian every 10 trajectories.
In order to reduce the errors, we take an average over theelaithe errors are obtained using a
jackknife analysis with binning. The bin size with which tgtocorrelation disappears is typically
10-20. We list the number of the configurations after theibmim Table 1.

A potential danger comes from the non-compact flat directibecalar fields. The current
lattice model as well as the target theory in the continuush diassical flat directions. Figure 3
shows in fact the scalar fields are not stabilized at the moridithe potential. It rather goes far
away over the cut off scale.We regard this fact as an evidence that we have actuallyritsdy
over the non-compact configuration space of the scalar fidtdfact the quantity of interest, the
Hamiltonian density, does not depends on the norm of theuscéfig. 4).

5. Conclusion and Discussion

We carried out the RHMC simulation for two-dimension#&l = (2,2) super Yang-Mills based
on Sugino model, which exactly keeps one scalar superchaigjag the simulation, we observed

"Effects of the large scalar fields will be discussed in [26].
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Figure 3: Evolution of the scalar norm over theFigure 4. Scalar norm dependence of the hamil-
trajectories in the anti-periodic case. The scaltwnian density at fixed lattice spacing. No depen-
norm is measured by/#%. It tends to be larger dence can be found.

as the simulation runs.

Nr /Ns
Ns| ag [025 05 1 1.5 2 3
6 | 02357 — 500 1,700 1,300 1,000 1,100
8 | 0.1768| — 500 1,100 1,100 280 700
10| 01414 | — — — — — 175

12| 0.11v9 | 20 600 110 450 500 —
16| 0.08839| 10 — — — — —
20 | 0.07071] 20 — — — — —

Table 1: Numbers of independent configurations after binning\¥pix Ng lattice, Ny refers temporal direc-
tion Ns refers spacial direction.

the ground state energy which is useful to check the dynadr8id&Y breaking. Compared with
the result in [20, 21], which did not utilize the dynamicafrféon but the fermion effects were
reweighted, the current simulation drastically reducedeiror. An extension to couple the matter
multiplet based on [27] will be an interesting application.

Before giving the conclusive result with respect to SUSYakieg using this simulation, we
should check whether the current lattice model actuallgriless the target continuum theory. We
should check the restoration of the other three superchasgaicitly. Itis no longer an assumption
based on the perturbative discussion but the current sfionlavith dynamical fermion allows us
to give an explicit numerical check [26].
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