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1. Introduction

The two-dimensional#” = 2 Wess-Zumino model in the continuum shows no spontaneous su-
persymmetry breaking. However, a lattice formulation must break (pathefsupersymmetry
explicitly due to the failure of the Leibniz rule on the lattice. In this model high statisiiT
large lattices are available and supersymmetry restoration effects caalpeeahnumerically. The
restoration of supersymmetry in the continuum limit must be treated carefullgsalsden demon-
strated in supersymmetric quantum mecharitg][1, 2]. One possible way tngiat relevant
supersymmetry breaking operators is the application of a blocking tranmagfion to a free theory
[B] leading to solutions similar to the Ginsparg-Wilson relation for the chiral sytrynifd].

A further suggestion keeps at least one supersymmetry on the latticeyecbaad goes under
the name of “Nicolai improvement[]5]. In former work§][f, 7] such imprdveodels using
Wilson fermions were simulated, and discrepancies to the perturbativié assmuell as problems
with the extraction of masses occurred at stronger couplings. In this (seEk[B] for detailed
analyses) the effects of the Nicolai improvement in the intermediate couptirgeere analyzed
and compared to results ahimprovedsimulations. Additionally different fermion formulations
(standard/twisted Wilson, SLAC) are explored.

2. The model

The continuum action with complex field . . .

¢ =¢1+ig2,

Seon= [ dx(20609 -+ JW/(9) 2+ §My)

M = %0 + V%9 +W'P, +W'P_
(2.1) m*
N . 1692
is invariant undefour real supercharges
Taken together they satisfy th¢” = (2, 2)
superalgebra, and it has been argued that
one supersymmetry can be preserved on

the lattice [¥]. 0 . . .

—_m —_m

The holomorphic superpotential here g 29 0
(see Fig[ll) Figure 1: Classical potentiaW'(¢1)|? from ) for van-
ishing imaginary partd, = 0). In the free theory limit
W(p) = %m¢2 + %g¢3 (2.2) (g— 0) the left minimum is pushed towards minus infinity.

contains a mass parameteand defines a dimensionless couplig- % This theory possesses a
discreteZ3 symmetry which in general is partially broken by a lattice discretization. A deative
expansion in orders of around the free theory at= 0 is possible and is used below.

2.1 Nicolai improvement

One real supersymmetoan be preserved on the lattice by using the action

S= %;s}m zy BMyy Uy (2.3)
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in terms of the Nicolai variablé, = Z(d_cﬁ)x + W with W = W/ (@), Wy := dW /9 ¢y and

> 98 0%
Moo — [ My 200\ _ [ 99y 34, (2.4)
Y\ 20, Wiy %6 %% ' '
y y

In terms of the original field, the lattice action reads
S— 2 (2 (547)X(a¢)x+%\m&}2+m&(a¢)x+wx(5cﬁ)x) + Xzy BeMyy Uy (2.5)
This action only differs from a straightforward discretization by discretgaaface terms
as=y (VK(08)x+ Wi(96)x) (2.6)
which must vanish in the continuum limit.

2.2 The lattice discretization

To preserve the full supersymmetry of the free theory the same latticeatiegis for bosonic and
fermionic degrees of freedom must be used. In this extensive studympare three different
lattice derivatives:

e Symmetric derivativgdy;) = $(8¢+fuy — Opy) With standard WilsortiermW, = W' (¢y) —
5(Ag)x usingr = 1. The Wilson term must be added§ (and not to the derivative) in order
to obtain an antisymmetric matr(d,,)xy. This results in a fermion matrix

_(W8y 28y | T
Mxy—( W 5Xy> 5D (2.7)

e Symmetric derivativedS with twisted (imaginary) WilsotermW, = W' (¢y) + i%(A(l))x re-
sulting in

_ (W08 20y r
MXV_( 20yy W"(@)%)Jr%zAxy' (2:8)

The choicer = 2/+/3 reproduces the mass of the free theory ug’ta*) at lattice spacing
as discussed if][1].

e SLAC derivatived,..y = (—1)X*ym, Oxx = 0 with fermion matrix

(W98 20y
Mxy—< 20, W,,(@&y). (2.9)

Using these discretizations, we have simulated the improved and unimproitedugrsurface
terms) models applying@ombination of Fourier accelerated HMC with higher-order integrators
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Figure 2: Left: Reduced improvement tertdS/N for different lattice sizes: & 9 (squares), 1% 15
(triangles) and 2% 25 (circles). Colors depict = 0.8 (red), 10 (green), 12 (blue), 15 (magenta).
Right: MC history of improvement term and fermion determinant (ELifaproved N = 15x 15, my; = 0.6,
A = 1.4 (green), 17 (red), 19 (blue)).

3. Limitations of the Nicolai improvement

For simulations of the improved model
including dynamical fermions the expec-
tation value of the bosonic action is inde-
pendently ofA fixed to

(Sg) = N = # lattice points  (3.1)

p(@1(1p))

Nevertheless the improvement tefA§—=

Sx (\A&(ad))x +Wx(dd7)x) does not nec-

essarily vanish. Therefore, we analyze
ASwith SLAC fermions at different cou- ,
plings and for different lattice masseg

=m/Ns (Fig. B, left panel). Heré\; de- Figure 3: Mode analysis c‘)ﬁ“ ensembles in the physical
notes the number of lattice points in SPargreen A = 1.4) and unphysical (redy = 1.7) phase. Here
tial direction. In the continuum limitQiatt  p is the distribution function for the modulus of the lattice
— 0) the improvement term consistentlymomentum averaged over 25,000 configurations (SLAC im-
vanishes for every. proved,N = 15 x 15, My = 0.6).

For (AS) /N > 14% the behavior of improvement term and fermion determinant changes sig-
nificantly (Fig.l}, right panel). The improvement terms dominates the bosotmay more than
one order of magnitude whiléSs) = N is still preserved. Additionally the fermion determinant
grows drastically and so hinders the system from returning into the origigain of configuration
space. This instability can be explained by reconsidering the improved action

wly

™

== ;Z‘Z(‘M’)X*WX "= 2 (2(547)X(0¢)x+%\v\/x}2) +AS 3.2)

This action allows for two distinct behaviors of the fluctuating fields. Thesmayly expected
behavior consists of small fluctuations around the classical minima of thetiabtexiternatively,
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Figure 4: Masses for bosonsp({, ¢», statistics 16-10’ configs) and fermions (statistics “6onfigs) for
improved(left) and unimprovedright) model with standard Wilson fermions.

(B.2) allows for large fluctuations of kinetic and potential term to be competissy the improve-
ment term of opposite sign. In this situation, it is definitely no longer possibbettact meaningful
physics.

Analyzing the distribution of the fields in momentum spaca at 1.4 andA = 1.7 (Fig. [)
shows that for too large couplings(or lattice massemy) the simulation samples onynphysical
UV dominatecconfigurations. Therefore at strong couplingaaeful analysis of the improvement
termduring the simulation must be ensured in order to achieve reasonable simslation

4. Weak coupling

In the regime of weak couplingg (< 0.4) we are able to match bosonic and fermionic masses so
as to observe how well supersymmetry effects (e.g. the degeneracyssés)are realized on the
lattice. Furthermore continuum extrapolations of the different discretizaiom compared to the
result of continuum perturbation theory at one-loop order.

4.1 Signs of supersymmetry at finite lattice spacing

In an unbroken supersymmetric theory bosonic and fermionic massegeoitrcthe lattice formu-
lation the supersymmetry is broken explicitly (at least partially). This inducessilple breaking
of the mass multiplets which is explored at different lattice spacingd fer{0.2,0.4}, m= 15
(Fig.[4). Even with a statistics of up to 1@8onfigurations the masses of bosons and fermions can
not be distinguisheéh our simulations. Additionally improved and unimproved models give the
same results (within error bars) far< 0.4.

This demonstrates that for Wilson type fermions in a region where the simulatmmn®t
show unphysical UV effects the Nicolai improvemenhist necessaryA stable simulation with
the unimproved model is likely to provide the same results, at least in the comtilimit.

4.2 Continuum extrapolation

For the free theory the lattice masses can be computed analytically. To ma&etamith perturba-
tion theory which is carried out in the continuum it is crucial to get a stabléraaumm extrapolation
even for the interacting case. Extrapolations from finite lattice spacing totfismaum using stan-
dard and twisted Wilson fermions for the improved modek{ 15, A = 0.3) are shown in Fid.]5
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Figure 5: Left: The continuum extrapolation of fermionic massesXet 0.3 for the improved Wilson and
twisted Wilson model. Here, the SLAC result is given for oimgke lattice size. For comparison the exact
results for the free theory are also shown.

Right: Continuum extrapolation of fermionic masses for the weaklypled regime in comparison to the
perturbative result.

(left panel). These are based on lattice sidgs {20, 24,32 48 64} and demonstrate that both for-
mulations yield the same continuum result. Additionally this result also coincidegwithdiction
by the SLAC model on a finite latticé(= 45 x 45). Furthermore the twisted Wilson fermions are
much closer to the continuum limit than standard Wilson fermions for finite latticarspal here-
fore our analysis of the intermediate coupling case uses only the twistedftygiéson fermions
and SLAC fermions.

4.3 Comparison to perturbation theory . . . . . .

For smallA we compare the perturba-
tive one-loop result for the renormalized
mass

M, = NP (1— 4’\2> +0(A% (4.1)

140 |

120

mg

3V/3 100 2y S i

to the continuum extrapolation of the lat- E :
one-loop ——

tice data (Fig[]5, right panel). All dif- 80 tw. Wilsonimpr. +—e— 1
ferent formulations are seen twincide Jé&!ﬂﬁ? s
with perturbation theory Even for the 00 ol.z of4 ofs o|.8 10 ].IZ
unimproved model with Wilson fermions A
the correct (supersymmetric) continuunfrigure 6: Masses of the improved and unimproved model
limit is reached within error bars. with SLAC fermions on a 4% 45 lattice and continuum ex-

trapolated results for twisted Wilson fermions are comgare
5. Intermediate coupling with the perturbative one-loop result in the continuum.
To explore the limitations of the one-loop calculation we have performed simutatth A €
0,1.2] (see Fig[}). The continuum extrapolations of Wilson type fermions areappijcable up
to A < 0.7 using lattice sizes dfls < 64 due to the improvement problems. To cope with this, we
instead use SLAC fermions which allow for a much largeiange on the accessible lattice sizes.
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For A > 0.6 the improved and unimproved model with SLAC fermions give slightly differen
results on a 4% 45 lattice. To check which model is closer to the continuum limit additional
simulations withN = 63 x 63 atA = 0.8 have been performed (Ta{B. 1). The data unveil that the
unimproved model suffers from stronger findeffects. Therefore the correct continuum limit is
reached for both SLAC models but theproved SLAC model is closer to the continuum liomita
finite lattice.

6. Conclusions and outlook

We have performed a detailed analysis of the Nicolai im
provement in the Wess-Zumino model. This improvement
introduces new problems due to the sampling of unphysi-45 1022(26) 11.49(9)
cal (high-momentum) states. Additionally with high statis- 63 105415 1070(19)

tics bosonic and fermionic masses agot be distinguished Table 1. Fermionic masses for the
for Wilson type fermions at finite lattice spacing in the weaR-AC derivative on two different lat-
to intermediate coupling region for both the improved aniife sizes foh =0.8.

unimproved formulations. Even without improvement tt@rrect continuum limitis reached.
Therefore the term “improvement” is somewhat misleading. Only for SLA@i@ns in the inter-
mediate coupling region the improved action is closer to the continuum limit on finiteskattic

More detailed results on this model including the discussion of discrete symsydtreab-
sence of finite size effects and the effects of negative fermion detertsican be found in]8].

In order to access the region of stronger couplilgs>(1.5) further algorithmic improve-
ments are necessary. With the help of the PHMC or RHMC algorithm and ingbsmieers and
preconditioners we are confident to obtain strong coupling results in #rdutare. The elaborate
algorithms will then be used to explore the = 1 Wess-Zumino model in two dimensions where
a spontaneous supersymmetry breaking is expected and to study supetsic CPN models in
two dimensions.

Ns improved unimproved
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