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1. Introduction

The method of largéN continuum reduction[J1[] 2] foBJ (N) gauge theory allows for the
calculation of the infinite volume, infinit& limit of certain physical quantities using volumes
reduced to a small physical size. Numerical estimae$|[1, 2] of the physitiahl size above
which continuum reduction holds indicate that this method can be used togerpdactical results.
The chiral condensaté][3] and the pion decay congtant[4] were cedduiia the largeN limit
in four dimensions using continuum reduction. In this paper, we show teatm#thod can be
extended beyond bulk quantities and that it also produces reliable resuljisantities with space-
time dependence such as the heavy quark potential, from which the strangriean be extracted.
Invoking largeN continuum reduction, we included Wilson loops larger than the size of the lattice
The results validate the method of continuum reduction for calculating quaridigsd on the
space-time dependence Wilson loops.

A precise calculation of the string tension in three dimensi@hIN) gauge theories has
been performed withN up to 8 on large latticeg][5]. We present a complementary calculation with
N = 47 on % lattices using continuum reduction. The calculation of Rff. [5] used lative
functions of smeared Polyakov loops to extract the string tension. Aftexpiating tdN = c and
to the continuum, the result was

;éﬁ = 0.1975+ 0.0002— 0.0005 (1.1)
whereg is the gauge coupling. This has to be compared with the analytical calculati¢}, in [
namely,\/%T ~ 0.1995. Although the two results are not in perfect agreement, the mairvatiser
is that the approximations used in the analytical calculation are very well rtediva

Our use of continuum reduction to directly compute bhe- oo limit of the string tension by
working at large enougl so that the finiteN corrections are smaller than the numerical errors
gives [6]

Vo

&N = 0.1964+ 0.0009 1.2)
This result and that of[ (1].1) are consistent at the level of their one sigroese This level of
agreement is, in turn, consistent with neither the la¥igextrapolation of Ref.[[5] nor the volume
reduction of the present calculation having unexpected errors. Whihedbthe numerical results
lie below the analytical estimate, the discrepancy is relatively small. Thus therizairevidence
that the analytical result is an excellent first approximation that capturek ofuithe physics re-
mains strong.

The paper is organized as follows. We explain how we use smeared Wilsps o compute
the string tension in Sectidh 2. The lattice results for the string tension along wittotitinuum
extrapolation are also presented in this section. An intermediate step in oufatalt is the
dimensionless ground state string enemgk). In Section[B, we show results fon(k) at one
fixed lattice coupling to illustrate its behavior as a functiork@fnd how it is used to extract the
string tension. We also show thak) is unaffected by the smearing parameter. We illustrate the
extraction ofm(k) at one fixed coupling in Sectid 4. Here we show how the smearing parameter
affects the overlap with the ground state. The main result in this paper is ethtagingN = 47.
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We show that the finité\ and finite volume corrections are small at this valuéah Section[p.
We explain why this method is preferred over the Creutz ratio in Segtion 6.

2. String tension using Wilson loops and continuum reductia

ConsiderSJ (N) Yang-Mills theory on a periodic lattice with the standard Wilson gauge ac-
tion. The method off[5] is to measure the string tension using correlationsyd#kw loops with
separationt that wind around a space direction. Continuum reduc{ipf][1, 2] implies tedathe
N Yang-Mills theory in a continuum box of sizé s independent dfas long a$ > I, = 1/T; with
Tc being the deconfining temperature. One should be able to compute expecsdties of Wilson
loops of arbitrary size on al¥ continuum box using folded Wilson loops and extract the string
tension. To implement this approach to the three-dimensional Yang-Mills tisétimg tension, we
use the following procedure:

¢ We fix the lattice size td.2. We usel = 5 for the most part and only use= 4 to verify
reduction.

e We fix N so that finiteN corrections are small. We sit= 47 and show using one instance
that finiteN corrections are small & = 47.

e We pick an appropriate range of lattice couplimg: ﬁ

— b cannot be too small since we have to be away from the bulk transition on the lattic
associated with the development of gap in the eigenvalue distribution of theepieq
operator [B]. Therefore, we pidik> 0.6.

— b cannot be too big since we have to be below the deconfining transitidn $05.
Therefore, we pick < 0.8 [H].

e We use smeared space-like links and unsmeared time-like links.

e We use the tadpole improved couplibg= be(b) to set the scale and considéx T Wilson
loopsW (K, T) with 1.5 < bﬁw% < 12.5. This amounts to expectation values of Wilson loops
that range from B2 to 2- 10 %,

e KeepingK fixed, we fit
INW(k,t) = —a—m(K)t; (2.1)

wherek = b% andt = bl| are the dimensionless extent in the space and time direction respec-
tively. m(k) is the dimensionless ground state energy. This fit assumes that therefisa per
overlap with the ground state. Note theashould be zero sincé/(k,0) = 1. Any small
deviation from zero seen in the fit is due to the contribution from excited states

e Finally, m(K) is fit to ab?k + coby + . The combinatior/chy is plotted as a function dfl‘z.
We expect lattice spacing effects to lead ofba% in Yang-Mills theories and this is indeed
the case in Fid]1. The continuum limit extracted from this figure was quotednr(ER).
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Figure 1: The string tension is plotted asa  Figure 2: The ground state energg(k) as
function of the lattice spacingfl. The fit a function ofk for the coarse and fine lattice
is an extrapolation to the continuum. spacings considered here.

The use of smeared links improves the measurement of Wilson loops. Thenanthe
overlap of the space-like sides of the Wilson loops with the ground stateindneases the signal
relative to the fluctuations and simplifies thibehavior of the loop410]. One step in the iteration
takes one from a sdalé”(xl,xz,t) to a setUé'“) (x1,X2,t). Before reunitarization, the weight of
Uéi)(xl,xz,t) is (1— f) while that of each staple i5/2. The time-like linksUs(x1,%2,t), are not
smeared, and the smearing only involves space-like staples. There grarameeters, namely, the
smearing factoff and the number of smearing stepsOnly the productt = fn matters, andf
plays the role of a discrete smearing step. For a giveghe overlap of the smeared loop with the
ground state does not depend bas long as it is small. But the overlap of the smeared loop with
the ground state does depend uponWe set the value of the smearing parameter to 2.5 by
choosingf = 0.1 andn = 25. To study the effect of varying we also consider = 1.25 (f = 0.05

andn = 25) at one coupling.

3. Extraction of string tension

U (N) gauge fields were generated ongp@riodic lattice using the standard Wilson action.
One gauge field update of the whole lattife [2] is one Cabibbo-Marinatiteth update of the
whole lattice followed by on&J (N) over-relaxation update of the whole lattice. A total of 1500
such updates were used to achieve thermalization. Measurements wematesd by 10 such up-
dates and all estimates are from a total of 832 such measurements. Eglbrpiantities at a fixed
b andN were obtained by jackknife with single elimination.

The ground state energy(k) obtained as a function &f= bﬁ| is fit to
C1
k
We expeciob? to approach a finite value in the continuum lintif (~ «). The three parameter fit
of m(k) as a function ok is shown in Fig[.

m(k) = ob?k+ coby + (3.1)

4. Extraction of m(k)

The dimensionless ground state enengk) is extracted at a fixe# by fitting InW(k;t) to
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Figure 3: Plot of InW(k,t) as a function of Figure 4: Plot of InW(k,t) as a function of
t for seven different values dfatb = 0.8 t for seven different values dfatb = 0.8
with T = 2.5. with T = 1.25.

—a—m(k)t as discussed in S€d. 2. Whitgk) should be independent of the smearing parameter
T = fn, the value ofais expected to depend an

We will useb = 0.8 as the coupling to illustrate the extractionrofk). Figure[B and Fig.]4
show the performance of the fit for two different valuestpihamely, 25 and 125 respectively.
Thesolid circlesshow the data points without errors. Té&id linesshow the fit of the data. Seven
values ot were used to fit the data at okegand data at seven different valuekafere fitted. This
amounted to all Wilson loops from»11 to 7x 7 on the 5 lattice. The fit parameters are shown in
Table[l and Tablg 2. Only the average values of the fit parameters are listed.

Investigation of Tablg¢]1 and TabfE 2 shows thik) does not depend on There is a small
difference in the two values af(k) at a fixedk for the two different values of if k is large.
Additional analysis shows that this difference is within errors. Furtheemibre fitted values of
ab? for the two different values of are the same within errors.

k 162 323 485 647 808 970 11.31
a 0.001 0.003 0.009 0.019 0.055 0.047 0.071
m(k) 0.133 0.218 0.286 0.347 0.399 0.464 0.517

Table 1: Fit parameters corresponding to the fit\iik,t) = —a— m(k)t for seven different values df at
b= 0.8 witht = 2.5.

k 162 323 485 647 808 970 11.31
a 0.002 0.012 0.029 0.054 0.102 0.114 0.144
m(k) 0.133 0.218 0.287 0.349 0.404 0.468 0.526

Table 2: Fit parameters corresponding to the fitMgk,t) = —a— m(k)t for seven different values df at
b= 0.8 witht = 1.25.

The values ofa in Table[] and Tabl¢] 2 do show a variation wittendk. Since a smaller
value of t implies less smearing, the overlap with the ground state is less for smakéd this
results in a larger value @fat smallerr. The value ofais very close to zero for smailindicating
excellent overlap with the ground state for the chosen value 8k k increases, the length of the
loop increases and the perimeter divergence has a stronger effectestits in a larger value of
aask increases at a fixed
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Figure 5: The ground state energg(k) as Figure 6: The ground state energg(k) as
a function ofk for five different values oN a function ofk on two different lattices at
b=0.8.

5. Finite N effects

Two issues need to be addressed with the analysis performed so faavd/éxed our value
of N assuming finiteN effects are small. IN is not large enough, finit&l effects need to be
addressed. In addition, we also have to address finite volume effectscaintnuum reduction is
valid only in theN — oo limit.

We expectm(k) to have a fixed limit afN — o at a fixedk, L, b and 1. Indeed, this is the
case as shown in Fif] 5 where the resultsrfigk) as a function ok are shown fob = 0.8 with
T=2.5o0n 5 lattice. All three fit parameters are consistent within errors all the way Mom23
to N = 47. The only glitch one sees is lats 8. This corresponds t = kb, = 5, which is the
linear extent of the lattice. One can argue that there are largerNratéects at strong coupling for
K = L. Since the fit oin(k) involves several values &f the larger effect at this particular value of
kis diminished in the extraction afb?.

Since finiteN effects can be ignored Bt= 47, we also expect there to be no appreciable finite
volume effects at this value ®. This point is illustrated in Fig.]6 where the result fotk) is
plotted atb = 0.6 andt = 2.5 on 4 and 5 lattice. We used = 0.6 for this comparison since we
have to be in the confined phase chiattice. Figure]6 shows that the two valueswk) at a fixed
k are consistent with each other within errors. The same is the case forplaedibeteb?. This
is not the case for; andcgb,, and this is probably due to a three parameter fit using only five data
points. Sub-leading coefficients are expected to depend sensitivelg datid points. Since we are
primarily concerned with the value of the string tension in this paper and sihocaraesults are
based on data taken oR,5ve expect the final result to be free of finkieand finiteL errors.

6. Creutz ratio

It is natural to ask how the Creutz ratfoJ11],

W(K,HW(K —1,J—1)
W(K,J—1)W(K—1,J)’

X(K,J)=—In (6.1)

performs as an observable from which to extract the string tension. Wewe to use Creutz ratios,
we would have smeared all links using all staples. But one can still ask leo@r#dutz ratio behaves
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with the asymmetrically smeared links. TKex K square Creutz ratios do not converge welKas
increases. Itis possible the situation would be different if we had smea#iratks.

Each data point in a Creutz ratio is obtained using only four different Wilksops,i.e. four
of the data points in Fid] 3. This is quite different from the analysis in this paeven different
Wilson loops in Fig[]3 are used to extract angk) point in Fig.[2, and the loops used for different
k form independent sets. Then th&k) are fit to determine the string tension. Both folded and
unfolded loops contribute together. This is the main reason we succeedetlanting the string
tension using the range of Wilson loops considered here. To extradtithigetension using Creutz
ratios, larger loops and therefore larger statistics and possibly lHrgeuld be needed.
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