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Spectra of space reduced gauge theories are studied usikgace methods. After short review
of the SU(2) model we discuss in detail the non-abelian sypemetric system with one fermion
and one boson in the large N limit. The system turns out to lvg kieh exhibiting a phase
transition and a strong-weak duality. Moreover it is eqléug at strong 't Hooft coupling, to the
XXZ chain of Heisenberg spins and, independently, to acatgas of g-bosons.
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Solving some gauge systems ...

Dimensional reduction of field theories is a useful trick ghhisubstantially simplifies the
system, but nevertheless resulting models often inheriymantrivial properties of their ancestors.
In Dublin we have reported [1] on the numerical study of thecsfum of the supersymmetric Yang-

Mills quantum mechanics with the SU(2) gauge group with tamittoniani =1,...D—-1, a=
1,...,N>2—1[2]

1. . 2 o
H = SPhph+ o fabcTaged X + 3 faoctldM gk, (1)

The spectrum of this system is very rich, c.f. Fig.1, and @lexhibits many features of the
parent theory [3]. Its salient characteristics include:utproken supersymmetry (the tails, or
wings, on the plot denote dynamically formed supermult§)le2) coexistence of the discrete (red)
and continuous (yellow) spectra. The discrete spectrume(lind red) is a consequence of a,
characteristic to the gauge theory, potentials with flatcoompact directions. On the other hand,
the continuous spectrum (which fills the central, denotethbyellow colour, channels on the plot)
results from the supersymmetry driven cancelations ofrdmesterse fluctuations which render the
guantum induced barrier inactive. Finally 3) the fractidmak value (1/4) of the Witten index was
confirmed[4] and is the consequence of the continuous speaxtending all the way to E=0. In
particular the (two) SUSY ground states belong to this contin and are non-normalizable.

All these results were obtained using the straightforwawdkFspace methods [5]. Namely,
the gauge invariant basis of the finite number of bosonic emibnic (here 9+6) oscillators was
constructed. Then the space was cut by limiting the totalbarmof bosonic quanta, and the cutoff
was subsequently removed. The discrete energies showg.hdeirrespond tomax~ 20 and have
already converged to more than three significant digits.
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Figure1: The discrete spectrum of tiie= 4 SU(2) supersymmetric Yang-Mills quantum mechanics.eStat

are grouped in supermultiplets, colored in red if the caniim spectrum is present in the channel, in blue
otherwise.

At the same time there is much interest in studying the lartimNof gauge theories and their
reduced counterparts. At large N mathematical structurfsuo dimensional models simplify, but
also new analogies have been found in higher dimension.Xaongle, while foN =2,3 andD =4
the non-SUSY part of (1) is the small volume limit of the LedtiYM theories, the infinite N limit
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is not only relevant to QCD, but for D=10, it becomes a celtdatanatrix model for the M-theory

[6]. The Fock space calculations, discussed above, becoane tedious and CPU consuming
with increasing N. Fortunately however, one can often dateua hamiltonian matrix analytically

strictly at infinite N. In this talk | would like to report results of sucrstudy [7].

Consider the following supersymmetric hamiltonian of oresdn and one fermion repre-
sented by the matrix valued creation and annihilation dpesa,a’ andf, f'. H = {Q,Q"},Q =
V2Tr[fal (1+ga")],Q" = v2Tr[fT(1+ga)a], or explicitly H = Tr[aTa+g(a*a+a'a?) + g?ala?] +
Tr[ftf+g(fTf(a'+a)+ fT(@'+a)f)+g?(fTafal + fTaal f + fT fata+ ffaf fa)] . Itis a slightly
more complicated version of the space reduced 1+1 dimesisémpersymmetric Yang-Mills the-
ory SY M. While the eigenstates of the latter are the gauge invapikame waves [2], our model
has more structure, as will be evident shortly.

Above hamiltonian conserves the fermion numbBee Tr[fTf]. In the planar limit the Fock
space is spanned by the single trace states ani tin@trix can be easily calculated in the lowest
fermionic sectors [7, 9]

F=0, [o,n)=Tr[a™M|0)/vN", <O,nH[0O,n> = (1+A(1—Gy))n,
<0,n+1/H|0,n>=<0,n[H|0,n+1> = VA /n(n+1). )

F=1, |1n) =Tr[a"f1j0)/VN", <LnH|Ln>= (1+A)(N+1)+A,
<1,n+1H|L,n>=<1nHyl,n+1> = VA(2+n).

As in the previous case, we restrict the gauge invariant murobbosonic quanta < B and ex-
amine convergence of the spectrum with that cutoff {irst two columns of Figure 2). Indeed
for A # 1 the eigenvalues converge revealing a discrete, manifagtlersymmetric spectrum (see
Fig.3, left). However in the vicinity oA = 1 the convergence is slower and is replaced by the uni-
form fall off of all eigenvalues to zero at= 1. Such a behaviour is typical for a phase transition at
Ac = 1 which separates strong and weak coupling phases. In bgithes the spectrum is discrete
while at the transition point the system looses it mass gdptamspectrum becomes continudus
Moreover, we have found that exactly at the transition pamdther interesting phenomenon
occurs[7]. Namely the supermultiplets rearrange whilesipgsacross\. anda newsupersymmet-
ric vacuum appears in the strong coupling phase, inRhe 0 sector. This is seen in the third
column of Fig.1 where the first few levels from both (F=0 andl}sector are shown. For low
cutoff, B,
the supersymmetry is broken (most noticeably in the vigioit A = 1), the levels forming su-
permultiplets in the weak coupling phase split, rearrangg r@join at strong coupling. In that
process one more level from < 1 becomes massless (and unpaired) inithe 1 region. All this
is happening in the smaller and smaller neighbourhood ottitieal point while we increas8,
the whole structure collapsing to one point at infinite cutdfhe new vacuum can be explicitly
constructed

10), = i (%) %|O,n>, b= \/LX (3)

n=1

IThis can be judged on the basis of the cutoff dependencelasiynas in SYMQM considered in Sect.sge
alsd10].
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Figure 2: The cutoff dependence of the spectrafgfin the F=0 sectorfor a range afs

Indeed this state exists only fdr > 1 and supplements the the perturbative vacyOm = |0),
which is there in both phases. Interestingly, the lowestfemmionic sectors reveal an exact duality
between weak and strong coupling phases

_ 1\ 1/
F=0 b (E#f (1/b) - p> = (B -17). (@)
_ (F=1) 1Y _1gF-y
F=1 b(a umy-?>_5<a1 (m—w)

Notice that the above mapping of energies takes into acaalditional vacuum state appearing at
strong coupling.

Usually, dualities hint at a solubility of a system and indlékis is also the case with our
Hamiltonian in the two lowest sectors. To show this we intimela non-orthogonal basis [B,) =
v/N|0,n) +by/n+1|0,n+ 1), and a generating functiofi(x) for the expansion of the eigenstates
| > into the|By) basis: f(X) = Y_oCaX" < |[P) =T n_oCn|Bn). Action of H on |Bp) is
so simple that the eigenequatiblyy = Ey is equivalent to the first order differential equation for

()

—~~ -

w(x) f'(x) +xf(x) — ef(x) = bf(0)+ f'(0),
W(X) = (X+b)(x+1/b), E =b(e +b)

which can be readily solved in terms of the hypergeometmictions,E = a (b — 1),

1 1 X+b

fx) =+ XT1/b F(l,or;1+a;—x+l/b), b<1,
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1 1 X+1/b

f(X) — 1_a X_'_—bF(l,l—Cr,Z—Cr, X+b

), b>1,

with the boundary conditiori(0) = O determining the eigenenergiks [7] ( see also [8]).

As the additional check one can confirm construction (3) tyrgea = 0 in theb > 1 solution.
and expandingo(x) = log[(b+x)/(b—1/b)]/(1+bx), b > 1, into powers of ¥b. Notice that
this cannotbe done folb < 1 solution — there is no such state at weak coupling!
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Figure 3: Low lying bosonic and fermionic levels in the first four felonic sectors.

With more fermions the system becomes even richer, and nemgohena occur. In particular
the supersymmetry results in a more involved pattern ofggnievels €f. Fig.3). While the SUSY
pairing was complete among tite= 0 and 1 states (Fig.3, left), it is no longer so with more
fermions (Fig.3, right). For example, every state with teaifiions has its (degenerate in energy)
supersymmetric partner with three fermions. However tlageestates in thé = 3 sector which
do not have counterparts with = 2. |Is SUSY broken? No, missing partners are in the four-
fermions sector etcad infinitum The lowest two sectors are special in a sense that there, and
only there, complete representations of SUSY are accommaddt is also evident from Fig.3
that theF = 0,1 spectra are much more regular (almost, but not exactlyndaic). Irregularities
seen in the higher sectors are somewhat reminiscent of ting-bady spectra with momentum
modes taken into account. It seems that only because ofiq@isity of the lowest two sectors
the analytic approach was so successful there. Neitheityguadr the full analytic solution seems
to exist in higher sectord

On the other hand the phase transition occurs at the same efliLHooft coupling also with
more fermions. Moreover, similarly to tHe = 0,1 cases, the supermultiplets rearrange and the
two new non-trivial vacuum states appear as we move from weakdogcoupling phases [7].

Even though there are few analytic results for arbitraryealf 't Hooft coupling, in the strong
coupling limit

Hstrong= lim %H =Tr(fTf)+ %[Tr(a*zaz) +Tr(a' f'af) + Tr(fTa'fa)), (5)
the system considerably simplifies and additional anall/ficsight is possible [7]. Namely, the

strong coupling hamiltonian (5) conserves a numbebath fermionic and bosonic quanta. The
Hilbert space splits now into sectors labeledlogndB = Tr[a'a) with H becoming a finite matrix

2Some analytic results with two fermions are available t¢ugh
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in each(F,B) sector,cf. Table 1. Many properties of these splitting can be studiquoéing
a fascinating interplay between supersymmetry and cortdrioa leading to a number of exact
results [11]. In particular we have found that there existsndinite set ofmagic sectors with a
single supersymmetric vacuum existing in (and only in) eaicthem. The magic sectors occur
only at ever- andB = F + 1, forming a magic staircase on the map (Table 1) of the whakeH
space. This generalizes results discussed ahdeeexample the first row of Table 1 represents the
F = 0 sector for any, i.e. without splitting into variou®'s, and indeed there is only one magic
(F, B) sector corresponding to one new vacuum found in the stroagliog phase. Similarly, there
are two magic sectors in the= 2 column, confirming what was said above.

This intriguing result is explained by even more interastguivalence to be discussed now.
Consider a Heisenberg chain of spins located on a finite, onergsional lattice

A 1L
oz = 5 > (ofoia+olol, +A07ar,)
1=
11 1 1 6 26 91 .. 16796
10 1 1 5 22 73 201 497 1144
9 1 1 5 19 55 143 335 715 1430 4862
8 1 1 4 15 42 99 212 429 809 1430 2424
7 1 1 4 12 30 66 132 247 429 715 1144
6 1 1 3 10 22 42 76 132 217 335 497
5 1 1 3 7 14 26 42 66 99 143 201
4 1 1 2 5 9 14 20 30 43 55 70
3 1 1 2 4 5 7 10 12 15 19 22
2 1 1 1 2 3 3 3 4 5 5 5
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 O 1 0 1 0 1 0 1 0
B
F|0 1 2 3 4 5 6 7 8 9 10

Table 1. Sizes of gauge invariant bases in the (F,B) sectors.

with the anisotropy parametdY. It turns out that our planar system at strong coupling (5) is
equivalent to the above XXZ chain with (for details see[7])

L

L=F+B, §= lelz:F—B, and A:i%
=

There are many consequences of this result, one of them leiitghere must exist a hidden

supersymmetry of the above Heisenberg spin chain. In p#aticsince our SUSY generators

changeF + B by one unit at strong coupling, the supersymmetry in questannects lattices with

different sizes!

There exists a vast literature on lattice spin models. Mbam tthirty years ago Baxter has
found that, forA = —1/2, the ground states with, = +1/2 have particularly simple eigenenergy
Eo= —%L for infinite L [12]. Recently his findings have been extendgd®iazumov and Stroganov
to any finite, odd L [13]. Our magic staircase appears at &vandB = F + 1 which suggests that

3Assuming there are no more phase transitions betweeri and infinity.
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the Riazumov-Stroganov states are nothing but our strooglicy vacua. Detailed inspection of
the relations betweelsirongandHxxz shows that indeed this is the case!

Amusingly, our system is also equivalent to another staéisinodel, namely that of the lattice
gas of g-deformed bosons with the hamiltonian

F F
H=B+Y dno+ Y bb,+bb' . (6)
i; i; 1M1 1~M—1

Skipping all the details (see again [7, 9]) we only mentiaat th view of this result the latter model,
considered to be non-soluble until now [14], is in fact stduds it becomes equivalent to the XXZ
chain which is solubleg. by the Bethe Ansatz. In fact a remarkable simplification esdn the
Bethe Ansatz when applied Hyong In particular, it can be used to construct analytically fihet
six SUSY vacua along our magic staircase [9].

Summarizing, we have shown that the Fock space methodsssfiglte eliminate fermionic
sign problem and can provide complete numerical solutipedsa and wave functions) for gauge
systems with large (15 - 50) number of degrees of freedom (D&pplied in the planar limit they
allow to diagonalize hamiltonians with an infinite numbercolour DOF. Planar spectra of the
space extended field theoretical systems can also be stuifed this approach (see [15] for more
references).
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