PROCEEDINGS

OF SCIENCE

Analysis of the Schrddinger Functional with Chirally
Rotated Boundary Conditions

HU-EP-08/33
SFB/CPP-08-71
DESY 08-121
LTH 804

J. Gonzalez Lopez 7 K. Jansen % and A. Shindler '

bHumboldt-Universitat zu Berlin, Institut fir Physik
Newtonstrasse 15, 12489 Berlin, Germany
'Division of Theoretical Physics, University of Liverpool
Peach Street, Liverpool L69 7ZL, United Kingdom
DESY
Platanenallee 6, 15738 Zeuthen, Germany
E-mail: j eni f er. gonzal ez. | opez@lesy. de,kar| . j ansen@lesy. de,
andrea. shindler@iv. ac. uk

The Schrodinger functional provides a valuable tool to genfnon-perturbative renormalization
on the lattice, in particular in a mass independent scheneestdy two different types of chirally
rotated Schrodinger functional boundary conditions whiielie been recently proposed to retain
the bulk automatic O(a) improvement of massless Wilson ii@msin finite volume. We investi-
gate the spectral properties and the quark propagatordwdgidve from these two proposals in
the continuum at tree-level of perturbation theory.

The XXVI International Symposium on Lattice Field Theory
July 14 - 19, 2008
Williamsburg, Virginia, USA

*Speaker.

(© Copyright owned by the author(s) under the terms of the Gre&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/



Analysis of the Schrédinger Functional with Chirally ReaBoundary Conditions K. Jansen

1. QCD and tmQCD continuum actions in infinite volume

In the continuum, the QCD action willy = 2 mass degenerate quarks in euclidean space and
at tree-level of PT takes the form

S@.9) = [dXFHDYX) ; Di=ydu+m (1.1)
Performing the non-singlet axial rotation on the quark seld
W) =8 x(x), PR =X(9eT, (1.2)

which relates the so called physicdly, ¢/}, and twisted based.x, x }, the form of the tmQCD
action is obtained

S"x, x] = / d*XxX(X)DtmX(X) ; Dim:= yudy+ Mg+ ipgysT® (1.3)

My :=mcoga) Uq:=msin(a). (1.4)

The mass term is now given by the sum of two terms, the untdjistg, and the twistedylq, quark
mass. QCD and tmQCD are equivalent in the continuum, in theesthat they describe the same
physics. This is due to the invariance of the functionalgrat under the axial rotation given in
Eqg. (1.2). They share all the symmetries and in particaa?? 7 is a symmetry.

The choice of the rotation angte= 7 (or equivalentlymy = 0,m = L), so called maximal twist,
is of particular interest since, when regularizing the tigamn the lattice with the standard Wilson
term, tmLQCD, the observables will be automaticallyag®improved [4].

2. Motivating chirally rotated Schrodinger functional boundary conditions

The Schrédinger functional (SF) is a finite volume schemectvigllows in principle for a
non-perturbative (when a lattice regulator is chosen) aadsvindependent renormalization of the
theory [1, 3]. When appropriate boundary conditions aresehgit enables to perform lattice sim-
ulations at or close to the chiral point. Moreover, it allotesstudy non-perturbatively the scale
dependence of the coupling or renormalization constangés awide range of energies, connect-
ing perturbative and non-perturbative regimes of QCD. Thef@ pure gauge theory has been
introduced in [1], and for QCD in [2]. The theory is defined ifoar dimensional Euclidean space
where in one of the four directions, which is conventionalhpsen to be the time direction, Dirich-
let boundary conditions (b.c.) are imposed. In the remagiipatial directions periodic boundary
conditions (up to a phase) are chosen.

The drawback of SF schemes is the presence (@) ®oundary effects, even when the lattice
theory with e.g. periodic b.c. is @)-improved. In the case of Wilson quarks, also bulkaD
effects will be present if standard SF boundary conditiamscansidered, even in the chiral limit
which is expected to be @)-improved at finite volume. The desire to retain bulk autom@X a)-
improvement with Wilson fermions [4] has motivated a chi@thtion of the SF b.c. Two proposals
for chirally rotated SF b.c. are at the moment in the litematthe twisted SF b.c. of ref. [6] (tSF)
and the twisted SF b.c. of ref. [BSF).
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To scrutinize the different proposals, the first step shtneldo analyze the continuum target theory
at tree-level of PT. In the following we present our resultsyi the study of the eigenvalue problem
and the quark propagator in the presence of the different. &FSee also the contributions from

S. Sint and B. Leder to Lattice 2008.

3. Standard and twisted SF boundary conditions
The standard SF boundary conditions [2, 7] are given by thetsons!

PLy(X)|x=0=0 P_y(X)|x=T=0 viaT (3.1)
Y(X)P_|x—0=0 via¥ Y(X)Py |yt =0 via.7 and¥ (3.2)

where, ‘via% or .7’ means that this b.c. are obtained from the b.c. for the gtiatd y/(x) at
Xo = 0 using the transformatiorié and/or.7 and

1
P.=2

5 (1£¥0). (3.3)

Performing the axial rotation (1.2) on the quark fields, ie dontinuum, the SF b.c. are twisted to
the form [6]

P (a)X(X)|x=0=0 P_(a)X(X)[x=T1 =0 (3.4)
X(X)YP-(a)]x=0=0 X(X) Y0Py () [xo=T =0 (3.5)
P(a) =% (14 1087 (3.6)

which for maximal twist setupy = 7, take the form (tSF b.c.)

Q: X(X)[xp=0 =0 Q- X(X)|o-1 =0 viaJ? (3.7)
X(¥)Qil—0=0 via?® XX)Q_ |t =0 via 7% and% (3.8)
with projector
1 .
Q. :=P.(11/2) = > (1 L£iyopr?). (3.9)

It is important to notice the correspondence between ttaiosl SF-tSF and QCD-tmQCD. The
discrete symmetries of the SF are the same as those of QCB thkildiscrete symmetries of the
tSF correspond to the ones of tmQCD at maximal twist.

3.1 Eigenvalue Spectrum

In this section we summarize the work done in [2] for SF b.a we perform the same study
for the tSF b.c. proposed in [6]. In particular, we want tolgpa@ whether the newly proposed SF
b.c. retain the gap in the eigenvalue spectrum.

LAl the definitions concerning the discrete symmetries caridund in ref. [8].
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3.1.1 Standard SF boundary conditions

Due to the presence of the SF b.g.,and ¢' belong to different vector spaces. In order to
be able to write the action as a quadratic form and have a vefilhed eigenvalue problem, the
complementary components of the quark fields must satistyriNen b.c.

(Go—MP-Y(X)[x,—0=0, (do+mMPLyY(X)|x=1 =0 (3.10)
P(X)Ps(do+M)|x=0=0, P(X)P-(do—M)|x=1 = 0. (3.11)

The finite size of the space imply a discrete spectrum of thaddperatoD'D, which due to the
structure of these particular b.c. has a non-zero lower thoun
2

A2(m=0) = (2—’_Tr) . (3.12)
It can be seen from this equation how the bound in the speatrigimates from the b.c. in the time
direction since it is the time extent of the system, T, whiobvjrles the spectral gap. The existence
of this bound is a crucial point if we are interested in a masependent scheme and regularizing
the theory on the lattice, where the numerical inversioéb is required even in the massless
limit.

3.1.2 Twisted SF boundary conditions

The tSF b.c. imply in this case thatandd fields belong to different vector spaces while
andu' (d andd™) belong to the same space. Requiring a quadratic form ofdtierewill need the
complementary components of the quark fields to satisfy ldEamann b.c.

(do — Hg)Q-X(X)[xo—0 =0,  (do+ Hq)Q+ X (X)|[xo=T = O. (3.13)

Again, the discrete spectrum of the Dirac operaﬂ{ﬁﬂDtm, has a non-zero lower bound

A2(1g =0) = (%)2+ . (3.14)

It is important to note that the eigenvalue problem with tSF bas an identical structure compared
with the SF b.c.; only the role of the twisted and untwistedrumasses has been switched (and
the twisted projectors have been used). Therefore, lookingq. (3.14) it can be seen that the
only effect of the untwisted mass term is to lift the eigenesl, while all mass dependence of the
structure of the eigenvalue is given by the twisted mass.term

Only at maximal twist, i.e. at zero untwisted quark mass,digenvalues have exactly the same
form as with the standard SF b.c. (with of couggginstead ofm), A2(m) = A2(Ly) Vn. This is
the expected result since the tSF b.c. are obtained from amah#wist rotation of the SF b.c.

3.2 Quark propagator

Due to the b.c. on the quark fields, the quark propagator ithbery with SF b.c. is a solution
of the equations

D(x)SF(xy) =8*(x—y), 0<XoYo<T (3.15)
P,SF(XY)lo=0=0,  P-SF(XY)lx=1 =0 (3.16)
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while the quark propagator in the theory with tSF b.c. is otgd from

D(x) SSF(xy)=0*(x—y), O<x,Yo<T (3.17)
QS (xY)l-0=0,  Q-S¥(XxY)lo-1=0 (3.18)

with D(x) the corresponding Dirac operator in each case.
Additionally, the b.c. on the right side must be satisfiedchtare given, respectively, by

§F(X7 y) P |yo:0 =0 s §F(X7 y) P+ |yo:T =0 (319)

S5F(%,Y) Q4 lyom0 =0,  SSF(x,y)Q_|y,— = 0. (3.20)

Unique and non-trivial propagators exist in each case. Toggator for standard SF b.&57(x, y),
is given in ref. [9]. The corresponding propaga@t™(x,y) is related to the standard one by the
non-singlet axial rotation (1.2) at maximal twist & 17/2)

SSF(x,y) = e 18T SSF(x y) e 4T (3.21)

4. wSF boundary conditions

The ysSF b.c. proposed in [5] are also defined for a two-flavour theoid are given by

M @(X)|x,—0=0 MN_@(X)|x,—Tr =0 via.7 (4.1)
@XM _|xp—0 =0 via%? @XM |1 =0 via.7 andg? (4.2)
My :% (1+73). (4.3)

Although ¢’ 2 7 is still a symmetry, the discrete symmetries separatély’, 222 and.7, with

g1z, [ 000 — it Lol
" el — eTiTiC

are now different from the discrete symmetries of both QCD amQCD. Moreover, in this case
there is no transformation in the continuum which brings &ESF.

4.1 Eigenvalue Spectrum

Due to the boundaries, theandd fields belong to different vector spaces and tij@) and
d_T(LTf) fields are in the same space. In this case, differently ta Wappens with the two previous
SF b.c., to demand a quadratic form of the action (for eacloéigvand a well defined eigenvalue
problem doesiotimply Neumann b.c. for the complemantary components of tlalgfields but

(Mg +iHqYsT3) M- @(X)[x,=0 =0 (4.4)
(Mg +iHgysT3) M @(X)[x,=T = 0. (4.5)

For a non-zero value of the quark mass, homogeneous Dirisluieare satisfied thus implying that
the quark field is zero everywherg(x) = @(x) = 0Vx. Therefore, the only possible non trivial
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solution could be obtained at zero mass. However, in theklhinit no additional b.c. for the
quark fields occur. Due to the lack of additional b.c. theradscondition which constraints the
possible values ofjy and it leads to a gapless spectrum. We conclude that thevaigerproblem
with ySF b.c. has either the trivial solution or, if batfy and L vanish, a gapless spectrum.
There are two important remarks which have to be made hemfifgis that from Egs. (4.4)-(4.5)
we would arrive to the same conclusion independently of tmnfof the mass term. The second
is that, this result is a consequence of the fact that theme istinction between the normah}
and the tangentialy) components of the fields at the boundarigs=£ 0, T), with respect to the
projector here considered (note that the projector doesamiinyy in this case).

4.2 Quark propagator

The equations for the quark propagator are in this case

D (x) S(x,y) = &*(x—y) 0<Xo,Yo<T (4.6)
I_I+S(X>y)|)<0:0 =0 H,S(X, y)|Xo:T =0. (47)

However, the propagator obtained from these equationsdd€$ not satisfy the corresponding b.c.
on the right side,

S(X7 y)rl* |yo:0 7£ 0 S(X7 y)l_l+ |YO:T 7£ 0. (48)

This means the only solution for the quark propagator, withrg fields obeyingsSF b.c. is the
trivial one.
On the contrary, it satisfies different b.c. which are oledifrom the b.c. on the left using charge
conjugation

SX,Y)M 4 lyy—0=0 S, y)N_|y,=t =0. 4.9

The corresponding b.c. for the quark fields would be

P(X)MN4[=0=0 PX)M_|x—1 =0, (4.10)

inducing a theory with b.c. which violat&? and% & .7 .

To conclude, continuum QCD at tree-level of P.T. with thayioidl ysSF b.c. proposed in [5] has
a quark propagator which vanishes everywhere. A non vamgskilution can be found only if we
preserve charge conjugation symmetry among the b.c. Gherdaict that thesSF b.c. violate
parity and preserve time reversal, we end up with a QCD theatty boundaries which violates
CPT.

We remark that for the tSF b.c. of ref. [6] the situation ideli€nt. It is sufficient to consider parity
and time-reversal symmetries in the twisted basis to sdetibg actually preserve separatéy
&L and 7.

5. Conclusions

In this proceedings contribution we have investigated.eat-tevel of perturbation theory in the
continuum, important aspects of three different ways tol@mgnt Schrodinger functional bound-
ary conditions by analyzing the eigenvalue spectrum andjtiaek propagator.
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Our conclusion is that the standard [1, 2] and twisted [6] $Fale a sound definition of QCD with
SF boundaries, while the lattice formulation proposed jrfs still open questions which need to
be further investigated before these type of b.c. can be insgectical simulations.
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