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1. Introduction

In the low-energy regime the maximally Abelian gauge (MAG) is suitable for theystd
the dual-superconductivity mechanism for color confinement. Accotditigjis mechanism, QCD
could be described by an effective Abelian theory with monopoles. Théarsation of the mag-
netic charges might give rise to quark confinement (see for instan2¢ 4bhd references therein).
Other important features of MAG are that, in the continuum, it is a renormalizghige (see for
example [3, 4] and references therein) and that it has a simple formulatitimedattice (see for
example [5, 6]). These features allow one to compare results obtainedéontiruum to results
from lattice calculations.

The infrared behavior of the running coupling constant in MAG can béietiuithrough the
vertex with two off—diagonal ghosts and one diagonal gluon. Thenpii@mg coupling is related
to the renormalization constants by the following expression

2
a(p) = a0 Zo(p) | 225 | 1)

whereZp is the renormalization factor of the diagonal gluon propag&igis the renormalization
factor of the off—diagonal ghost propagator afidis the renormalization factor of the vertex [7].
On the other hand, from perturbative studies in the continuum [7] onektloatZs = 2, and
therefore the running coupling depends only on the renormalization fattbe diagonal gluon
propagator

a(p) = aoZp(p). (1.2)
This fact can be seen as a clear manifestation of Abelian dominance.

In this paper we present a tree—level calculation of the ghost—gluonasuit the lattice in
MAG with the determination of the Feynman rules for these vertices. In Sectiwa 2resent a
brief review of the Yang—Mills theory in MAG, both in the continuum and in the latase. In
Section 3 we expand the ghost action on the lattice, obtaining the Feynmariauths ghost—
gluon vertices in MAG. In the same section, we conclude the paper with sonaks.

2. Yang—Mills theory in MAG
In this section we set our notation and definitions for #u?2) case.

2.1 Continuum case

The Abelian configurations of the gauge field are identified with the diagmmaponentsz%“3
corresponding to the (1) subgroup of th&SU(2) group, i.e.

Ay =T+ T3 a=12. (2.1)
The MAG gauge-fixing condition is given by
PP =0 (2.2)

with
D5 = 5%°0, — g™ a7} . (2.3)



This can be obtained by minimizing the norm of the off—diagonal componentsestiect to gauge
transformations. Indeed the stationarity condition

5 [ dixaorz =0 (2.4)

implies
9P =0, (2.5)
whered corresponds to a gauge transformation for the off-diagonal fields, i.e.

SAZ = — DN’ + g3 AN (2.6)

The remaining local (1) invariance can be fixed by imposing the additional condition (for the
diagonal component)
Oy =0 . (2.7)

In MAG the Yang—Mills partition function is written as
z- / D] det|.#®) &( 7?6 (3uesg) expl-Sem ()] 2.8)
where.#Z? is the Faddeev-Popov matrix
M= - DD — Fe P A S (2.9)

2.2 Lattice case

On the lattice, the Yang—Mills theory can be defined by the Wilson action [8Ftwih turn is
written in terms of link variabledl,,(x) € SU(2) group. The gauge fields on the lattice are related
to the link variables through the relation

Au(x) = % [Up() —US(x)] - (2.10)

At the same time, the link variables can be written as
Up(x) = U1 +iA%(x)0®, B=1,2,3, (2.11)
where 1 is the X 2 unit matrix ando® are the Pauli matrices with

U%)% + g [AB(x)]? = 1. (2.12)

The gauge field in the continuun, (x) is related to the link variable by the following expres-
sion
Uu(x) = expliag«,(x)] , (2.13)

whereq is the bare coupling constaftjs the lattice spacing and

Ay (X) = — A2(X) . (2.14)



For smalla one finds

ag .
AB(x) ~ 7,szf“B(x) + 0(@). (2.15)
In order to fix the MAG on the lattice one should minimize the functional

£ =— % Y Tr[o3Uu(x) a3Uf(x)] - (2.16)
XH

Indeed, using the properties of the Pauli matrices one can verify that mininttzénfunctional
above is equivalent to minimize the norm of the off—diagonal gauge fietds [&q. (2.4)].

3. Ghost—Gluon Vertices on the Lattice

Using the notation of Ref. [9], finite differences on the lattice are written as

9-p(x) = @(X) — p(x—aey) (3.1)
ORp(x) = (x-+ae,) — p(x) . (3.2)

By considering a gauge transformatigix) = exgiw®(x) TA], with A= 1,2, 3, an infinitesimal
gauge transformation on the lattice can be written as

SAB = — |TABGR 1 26RBCAC | wB(x) , (3.3)
wherel B is related to the Haar measure and is given by
1
M8 = 578+ M50, — S{TC TPV PALAL + . (3.4)

with TA = g”/2 . One can notice that lattice artifacts are present in (3.3) due to Eq..(2.15)
After using the Faddeev—Popov quantization method, the ghost actioree@phanded in the
series

Sp = Z(—:a(X) {—Déab

a
— goe® [aLM (1+ 20,1> <1 20“> 430 }

+ g3o%® (1— 0L> AL <1+ 20“)

— gaecehd <1— gy > A <1+ zaﬁ) +0(@)+.. } c®(x) , (3.5)

whered-R = %3'—3 and = ¥, ;9. One should observe that the lattice (discretized) version of
the Faddeev—Popov matrix has an infinite number of vertices. One shoaldaksthat, for the
numerical evaluation of the (off-diagonal) ghost propagator [6, 40§ uses the Faddeev—Popov
matrix obtained from the second variation of the functional (2.16).



3.1 Feynman Rules for the Ghost Sector

One can now perform the Fourier decomposition (see for instance ®ebI[Eqg. (3.5) in
order to obtain the Feynman rules for the ghost sector in momentum spagdirsiiierm on the
rhs of (3.5) is the off-diagonal ghost propagator:

b a

1
Hooee s = S0 (3.6)

The second term is a vertex involving one diagonal gluon and two offedegyhosts

ph. o = (2m*3*(k+p—p) x
N ’ /a
T igoe®. [p“ cos< p; >+p“.cos(p;ﬂ . (3.7)
k

3,1

The third term is a vertex with 2 diagonal gluons and 2 off-diagonal ghosts

b a

N = (2m* &' (K +k+p—p) x
k,/, ] v\k (—293) 53 M. cos<pg ) cos(p; ) . (3.8)
37“ 7v

The forth term is a vertex with 2 off—diagonal gluons and 2 off-diagghakts

b a
« »
N 7/
N ,
\ /

(2m)* 5*(K +k+ p—p')(—gd)
/ \ e Cedb 4 gadge )5“" cos<pga> cos(p; > . (3.9)

C U d v

The vertices above are the ones that survive in the Bmit 0 and should be compared with
the vertices obtained in the continuum [11]. A preliminary numerical studyeo¥éntex with one
diagonal gluon and two off-diagonal ghosts has been presented]in [12

The study presented here is preliminary, since a more careful analgsilsldie performed in
order to check the renormalizability of the theory in this context. In particolae, would expect
the inclusion of a quartic ghost term in the action, as occurs in the continBjum [
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