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1. Introduction

Locating the zeros of the partition function of lattice gaulgeories in the compleX plane and
their volume dependence is important to understand the lamder behavior of the weak coupling
expansion [1, 2, 3, 4] at zero temperature and the natureedfrite temperature transition [5, 6].
These zeros are called Fisher’s zeros [7] and should not tfeised with Lee-Yang zeros which
are zeros in the complex fugacity plane or the complexe®8H) plane [8] .

In the following, we discuss the Fisher’s zeros of a pure g&ild(2) theory with a partition
function

Z= |I_|/dU|eBS, (1.1)

where S is the Wilson action
S=Y (1- (1/N)ReT(Up)) , (1.2)
P

andf = 2N /d¢?.

Our expectations is that at zero temperature, there is muiginty on the real axis of the
complexB plane and as the volume increases, the zeros stay away feoraghaxis. On the other
hand at non-zero temperature, we expect that as the volwreases, the zeros pinch the real axis
as for the 2D Ising model [7].

The zeros of the partition function can be calculated udmegéweighting method [9, 5].

Z(Bo+AB) = Z(Bo) < exp(—ABS) >p, - (1.3)

It is convenient to subtract S>g, from Sin the exponential because it removes fast oscillations
without changing the complex zeros.
Z(B) is the Laplace transform of the density of staté€S):

‘S’nax
7(B) = /0 dS 1S exp(—BS) (1.4)

One can show [10] that fdBU(2) Snax= 2.4} and that for lattices with an even number of sites
in each directionn(S) = n(2.4, — S), where._4} is the number of plaquettes. FoDedimensional
cubic lattice with periodic boundary conditionsiy = L°D(D — 1)/2. Whenn(S) is known, it is
possible to calculate the partition function for any complalue of 3.

In the following, we consider symmetri¢*4nd @' lattices. For values oB near 2, the dis-
tribution of Sis nearly Gaussian and the location of the peak scales waethaimber of sites. The
departure from a Gaussian distribution is hardly visibleadrnistogram. However, as shown in Fig.
1, the residuals show a coherent behavior ofhlatice. As the volume increases, the non-Gaussian
features are scaled down and foe= 2.18 it seems that the signal is lost in the statistical noise. |
this figure,N; is the number of data points in thh bin andR the corresponding probability for
a Gaussian distribution with the estimated mean and vaiaAs in the Gaussian approximation
there are no complex zeros. It is crucial to resolve the degmafrom this approximation. We
now discuss two methods, one based on the estimation of theemte and the other on numerical
calculation of the the density of states.
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Figure 1: The residualgN; — NR)/(NR)%2 discussed in the text for a distribution of 500,000 values of
in an histogram with 100 bins for@U(2) pure gauge theory on & 4attice atB = 2.18.

2. The Moments M ethod
In this section, we consider the following corrections [@hie Gaussian approximation:
P(S) Oexp(—A1S— A2 — A3S — A,Sh (2.1)

The four unknown parameters can be determined from the frst fhoments using Newton’s
method. The moments are defined as

m = <S>/
M = < (S—<S>)?2> /M
mg = < (S—<S>)P3> /A
m = (< (S-<S>)*>-3<(S-<S>)?>2) /44
2.2)

As < S> scales like4;, and the individual terms of the-th moment like_#;", each subtraction
implies a loss of significant digits which increases with W&ume. As shown in Fig. 2 the third
and fourth moments have large errors even oft lafice. Once we obtai# (), we can calculate
the zeros of real and imaginary parts of it separately. Thescpoints are the Fisher's zeros. The
result for By = 2.18 on a 4 and @ lattice is shown in Fig. 3. The errors of the moments affect
P(S) and the location of the zeros. A change of the fourth mometitimthe error bars produces
changes in the zeros illustrated in Fig. 4. This change givelea of the errors associated with
the method.

3. Density of state M ethod

The probability distribution of the plaquette can be writtes

Ps(S) = n(S)exp(—BS) . (3.1)
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3rd Moments of 4~4, 6~4, and 8~4

3rd Moment

30 T T T T T T T T T T T T T

20 e

T
X
(o))

)
IS
1

—
o
T
L

4th Moment
<
\
VA
/
[
>
o~

—10k i
\\
—20} \%, i
_30 1 1 1 1 1 1 1 1 1 1 1 1 1
2.10 2.14 2.18 2.22 R.26 .30 2.34

Figure2: mg andmy for SU(2) as a function o8 on 4* and &' lattices.

To find the 3 independent density of state using Monte Carlo data, weatktm patch the data
from different together. First thg dependence was removed by multiplyingédy. Using only
the bins with statistics higher than half the maximum, werlayethe data from each set on top
of one another to make a smooth curve (we took the log of theesgain the bins and adjusted
the offset with a one-parameter fit). This procedure can badavith more detail in [11]. Using
numerical interpolation fof (S/.4p) = In(n(S/.4p))/ A5, itis possible to calculate the zeros using
numerical integration. The results are shown in Fig. 5.

As the changes were more important than expected (compar€ig.t 4), we estimated the
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Figure3: Zeros of the real (crosses) and imaginary (circles) usingovi@ 4 lattice, forSU(2) at 3y = 2.18.
The smaller dots are the values for the real (green) and maag(blue) parts obtained from the 4 parameter
model. The MC exclusion region boundary fibe= 0.20 (defined in [3]) is represented by boxes (red).

errors by using different distributions & Three different methods are used to get the partition
function, with which< cogImB(S— < S>)) > is calculated and compared as a function of the
imaginary part of3 at fixed real part 2.18. We estimated the error by generatinitjpte data. For
the first, we generated 50 bootstraped sets of configurasiodsomputed< cogImp(S— < S>

)) > directly by MC average. For the second, we get the partitimetions via the density of states
which are obtained using interpolation out of 50 patchinger the last, we fit the 50 patchings
using Chebyshev Polynomials instead of interpolation. Thebyshev fitting seems to have much
higher accuracy and stability than the other two methodsnalhtle used for further investigations.
Calculations of the zeros fomf < 0.11 with this method appear to be consistent with Fig. 3.
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Figure 4. Changes of the zeros when the fourth moment is shifted in diséiype direction until the error
bar is reached fofy = 2.18 on a 4 lattice.
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Figure5: Same quantities as in Fig. 4 on 4ldttice but with an interpolated version bf
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Figure 6: < cogImB(S— < S>)) > as a function of the imaginary part gf at fixed real part 2.18 with
three methods: interpolation, Chebyshev fitting and beagsid Monte Carlo, are orf 4left) and @' (right)
lattices .



Volume dependence of Fisher’s zeros Yuzhi Liu

4. Conclusions

In conclusion, we have compared the moments methods anddsatiased on the density of
states with the simple MC reweighting procedure to caleuthe zeros of the partition function.
The method where the density of states is approximated bigy@hev polynomials seems the most
reliable and will be used in future investigations.
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