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We study the location of the partition function zeros in the complexβ plane (Fisher’s Zeros) for

SU(2) lattice gauge theory onL4 lattices. We discuss recent attempts to locate complex zeros for

L = 4 and 6. We compare results obtained using various polynomial approximations of the loga-

rithm of the density of states and a straightforward MC reweighting. We conclude that the method

based on a combination of discrete Chebyshev orthogonalityand patching plaquette distributions

at differentβ provides the more reliable estimates.
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1. Introduction

Locating the zeros of the partition function of lattice gauge theories in the complexβ plane and
their volume dependence is important to understand the large order behavior of the weak coupling
expansion [1, 2, 3, 4] at zero temperature and the nature of the finite temperature transition [5, 6].
These zeros are called Fisher’s zeros [7] and should not be confused with Lee-Yang zeros which
are zeros in the complex fugacity plane or the complex exp(−2βH) plane [8] .

In the following, we discuss the Fisher’s zeros of a pure gauge SU(2) theory with a partition
function

Z = ∏
l

∫
dUl e

−βS , (1.1)

where S is the Wilson action

S= ∑
p

(1− (1/N)ReTr(Up)) , (1.2)

andβ = 2N/g2.

Our expectations is that at zero temperature, there is no singularity on the real axis of the
complexβ plane and as the volume increases, the zeros stay away from the real axis. On the other
hand at non-zero temperature, we expect that as the volume increases, the zeros pinch the real axis
as for the 2D Ising model [7].

The zeros of the partition function can be calculated using the reweighting method [9, 5].

Z(β0+ ∆β ) = Z(β0) < exp(−∆βS) >β0
. (1.3)

It is convenient to subtract< S>β0
from S in the exponential because it removes fast oscillations

without changing the complex zeros.

Z(β ) is the Laplace transform of the density of statesn(S):

Z(β ) =

∫ Smax

0
dS n(S)exp(−βS) (1.4)

One can show [10] that forSU(2) Smax = 2Np and that for lattices with an even number of sites
in each direction,n(S) = n(2Np−S), whereNp is the number of plaquettes. For aD dimensional
cubic lattice with periodic boundary conditions,Np ≡ LDD(D−1)/2. Whenn(S) is known, it is
possible to calculate the partition function for any complex value ofβ .

In the following, we consider symmetric 44 and 64 lattices. For values ofβ near 2, the dis-
tribution of S is nearly Gaussian and the location of the peak scales with the number of sites. The
departure from a Gaussian distribution is hardly visible ona histogram. However, as shown in Fig.
1, the residuals show a coherent behavior on a 44 lattice. As the volume increases, the non-Gaussian
features are scaled down and forβ = 2.18 it seems that the signal is lost in the statistical noise. In
this figure,Ni is the number of data points in thei-th bin andPi the corresponding probability for
a Gaussian distribution with the estimated mean and variance. As in the Gaussian approximation
there are no complex zeros. It is crucial to resolve the departure from this approximation. We
now discuss two methods, one based on the estimation of the moments and the other on numerical
calculation of the the density of states.
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Figure 1: The residuals(Ni −NPi)/(NPi)
1/2 discussed in the text for a distribution of 500,000 values ofS

in an histogram with 100 bins for aSU(2) pure gauge theory on a 44 lattice atβ = 2.18.

2. The Moments Method

In this section, we consider the following corrections [3] to the Gaussian approximation:

P(S) ∝ exp(−λ1S−λ2S2
−λ3S3

−λ4S4) (2.1)

The four unknown parameters can be determined from the first four moments using Newton’s
method. The moments are defined as

m1 = < S> /Np

m2 = < (S− < S>)2 > /Np

m3 = < (S− < S>)3 > /Np

m4 = (< (S− < S>)4 > −3 < (S− < S>)2 >2)/Np

(2.2)

As < S> scales likeNp and the individual terms of then-th moment likeN n
p , each subtraction

implies a loss of significant digits which increases with thevolume. As shown in Fig. 2 the third
and fourth moments have large errors even on a 44 lattice. Once we obtainZ(β ), we can calculate
the zeros of real and imaginary parts of it separately. The cross points are the Fisher’s zeros. The
result forβ0 = 2.18 on a 44 and 64 lattice is shown in Fig. 3. The errors of the moments affect
P(S) and the location of the zeros. A change of the fourth moment within the error bars produces
changes in the zeros illustrated in Fig. 4. This change givesan idea of the errors associated with
the method.

3. Density of state Method

The probability distribution of the plaquette can be written as

Pβ (S) = n(S)exp(−βS) . (3.1)
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Figure 2: m3 andm4 for SU(2) as a function ofβ on 44 and 64 lattices.

To find theβ independent density of state using Monte Carlo data, we needed to patch the data
from differentβ together. First theβ dependence was removed by multiplying byeβS. Using only
the bins with statistics higher than half the maximum, we overlay the data from each set on top
of one another to make a smooth curve (we took the log of the values in the bins and adjusted
the offset with a one-parameter fit). This procedure can be found with more detail in [11]. Using
numerical interpolation forf (S/Np)≡ ln(n(S/Np))/Np, it is possible to calculate the zeros using
numerical integration. The results are shown in Fig. 5.

As the changes were more important than expected (compared to Fig. 4), we estimated the
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Figure 3: Zeros of the real (crosses) and imaginary (circles) using MCon a 44 lattice, forSU(2) atβ0 = 2.18.
The smaller dots are the values for the real (green) and imaginary (blue) parts obtained from the 4 parameter
model. The MC exclusion region boundary ford = 0.20 (defined in [3]) is represented by boxes (red).

errors by using different distributions ofS. Three different methods are used to get the partition
function, with which< cos(Imβ (S− < S>)) > is calculated and compared as a function of the
imaginary part ofβ at fixed real part 2.18. We estimated the error by generating multiple data. For
the first, we generated 50 bootstraped sets of configurationsand computed< cos(Imβ (S− < S>

)) > directly by MC average. For the second, we get the partition functions via the density of states
which are obtained using interpolation out of 50 patchings.For the last, we fit the 50 patchings
using Chebyshev Polynomials instead of interpolation. TheChebyshev fitting seems to have much
higher accuracy and stability than the other two methods andwill be used for further investigations.
Calculations of the zeros forImβ < 0.11 with this method appear to be consistent with Fig. 3.
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Figure 4: Changes of the zeros when the fourth moment is shifted in the positive direction until the error
bar is reached forβ0 = 2.18 on a 44 lattice.
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Figure 5: Same quantities as in Fig. 4 on a 44 lattice but with an interpolated version off .
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Figure 6: < cos(Imβ (S− < S>)) > as a function of the imaginary part ofβ at fixed real part 2.18 with
three methods: interpolation, Chebyshev fitting and bootstraped Monte Carlo, are on 44 (left) and 64 (right)
lattices .
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4. Conclusions

In conclusion, we have compared the moments methods and methods based on the density of
states with the simple MC reweighting procedure to calculate the zeros of the partition function.
The method where the density of states is approximated by Chebyshev polynomials seems the most
reliable and will be used in future investigations.
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