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1. Introduction

Recently much progress has been made in calculating twgdbadenergy constants (LECs)
directly from QCD in the mesonic sector (see [1] for a recaeviaw). Lattice QCD (LQCD)
calculations of two-meson interacting energies are perak and, using Uscher’s formalism[2],
the scattering lengths are extracted. The exceptionadgncsignals obtained in the mesonic sector
have allowed for the extraction of pure three-body LECs [3ising the multi-boson finite volume
effects derived in [5, 6]. In the three-pion sector, the&otied three-body LEC is consistent with a
repulsive three-body interaction[3].

LUscher’s formalism can be used to extract scattering plafie of two interacting baryons
just as in the mesonic sector[7]. However, due to Pauli'dusign principle, there is no general
formula for relating LECs to interacting energy shifts fbrge (and more) fermions. In this pro-
ceeding | present finite volume effects for three identigah-</2 particles within a box, thereby
generalizing liischer’s formalism to three fermions. This analysis uspalsése, short-ranged in-
teractions of ‘natural size’, which is amenable to perttidmatheory. Results are given foy States
that are accurate to order P/lwhereas results for fand E states are accurate to order*1Mere
L is the length of a side of the box.

In the next section | give a heuristic explanation of how tmstouct three-fermion states
of definite cubic symmetry. The anti-symmetry restrictionakes this construction non-trivial.
Section 3 then enumerates the perturbative results in goafet/L using these basis states. |
conclude in sect. 4.

2. Constructing anti-symmetrised three-fermion states of good cubic symmetry

2.1 Jacobi basis

The three-body single-particle eigenstates of the dinoafess kinetic energy operatdr(in
units ofgg = 41 /mL?) in a box of volume E are given byjii; fi; fiz >, where

- ﬁ2 ﬁ2 ﬁ2
T Mg >= | oz > ( 2+ 2+2) . (2.1)
2 2 2

Hereri = (nix, iy, Niz) represents the wave number vector for itHeparticle and | have assumed
all particles have equal mass Other quantum numbers, such as spin (and isospin), have bee
suppressed.

For reasons which will become apparent below, the singltéepa states are now transformed
to a Jacobi basis using

Rip =TT
_ L1
Rs =T3— > (T1+T2) (2.2)

_ 1
Rem = é(f'1+f'2+f'3) .

HereR,, represents the relative motion between particles 1 afg &2presents the relative motion
between particle 3 and the center-of-mass (CM) of partitlesd 2, andR.m is the total CM
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Rem

Figure 1: Depiction of transformation from independent degreesasdiom in the single-particle basis (left)
to the independent degrees of freedom in the Jacobi bagig)(ri

motion. In momentum space, this corresponds to the follgwiansformations,

P = %(ﬁl— P2)

—

=2l ) 23)
Pom = Pr+ P2+ Ps.

Eigenstates in this Jacobi basis are definefilgsNs Nem >, where now

T |N12 N Nom >= [Ny N3 Nem > (leer %N§+ %N§m> - (2.4)
Figure 1 shows this transformation schematically.

Since interactions occur only between particles (I assumexternal potential acting on the
fermions) and typically only the lowest energy eigenstatesof interest, the utility of switching
to the Jacobi basis is now manifest: one can simplyNsgt= 0. Thus a three-body problem
effectively becomes a ‘two-body’ problem. All results iretfollowing section us&lgy, = 0, though
it is straightforward (but tedious) to generalize to nowzE€M motion.

A subtle point comes about from the transformation to Jabalsis since the box boundary
conditions are originally defined in the single-particlsisaln the case whe¥m = 0, for any com-
ponent ofN3 which is odd, the corresponding componenilgf must satisfy anti-periodic boundary
conditions. Conversely, any componentNyfwhich is even has the corresponding component of
N, satisfying periodic boundary conditions. These restitican be derived by comparing the
completeness relations within the single-particle basikthe Jacobi basis.

2.2 Three-body antisymmetrised states

The state$N12 N3 > (the indexNcy is dropped since only zero CM motion is considered) are
not anti-symmetric under exchange of any two particles.i-8yitmetric states are constructed by
projecting onto the three-body anti-symmetriser,

1
P2 = §P§/2(1— Pis—Ps3) , (2.5)
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whereR;j is the permutation operator that permutes particksd j and

pl?— % (1—Ppo) (2.6)

is the two-body anti-symmetriser of particles 1 and 2. Nbtt Eq. 2.5 commutes with the parity
operator. Thus the states of interest are ones that satisfy

P2ni m>=nin>,

where|ni 11> represents thé" state of cubic sheh with definite parityrt. It is made up of linear
combinations ofNi2 N3 > such thalNZ,+ N2 = n. For each cubic shell there is a finite number of
anti-symmetric stateB,.

2.3 Cubic group symmetry

The stategn i 7> are now anti-symmetrised but are not states of good cubiarstry.
Standard group-theoretical techniques can be used taxab&bappropriate linear combinations of
Ini > such that the overall anti-symmetric state falls into onéheffive irreducible representa-
tions (irreps) of the cubic group: AA,, E, T1, and T[8]. A cursory description of this procedure
is only given below.

Given the set of anti-symmetrised stapes 77>, matrix elements of the cubic rotation opera-
tors R, are constructed using this badig < n j mRy|ni >, forming a regular representation
of the group. This regular representation consists of 24icest all of dimensio,, x D,. Traces
of these matrices give five distinct charactgegr), and using the five characters of the irreps of
the cubic groupyr(r), and the number of rotation elements in each irrgp(r), the multiplicity
of each irrep in this regular representation,

5
mRr= 2—14 Z nir(NXR(NXIR(T),
r=1

for a given cubic shelh is found. Given the dimension of each irrelpg(r), projection operators
for each irrep are then constructed,

Rr= 2—142d|R(|’)X|R(|’)O;Ra :

from which the anti-symmetrised states of definite cubic reyainy are constructed. Table 1 enu-
merates the anti-symmetric states for the first three cuiigtiss Note that Pauli’s exclusion princi-
ple prevents any three spin-1/2 fermion states residingdn & 0 cubic shell.

3. Perturbativeresults

At up to order 1/, only s-wave and p-wave interactions contribute. | parawesthese
momentum space interactions in the following manner:

/2 2
Vo(P, B) = 4’::'0 [1+ a°2r° (p ;rp >+. . ] (s-wave) (3.1)
/2 2
V(P ) = 12;5‘1 5.5 [H% <p Zp >+. . } (p-wave). (3.2)



Three Fermionsin a Box Thomas Luu

n Spin Parity Aq Ao E T1 To Dn
1 3 + 1 0 1 0 0 3
1 3 - 0 0 0 1 0 3
1 3 - 0 0 0 1 0 3
2 i + 2 1 3 1 2 | 18
2 3 - 0 0 0 3 3 18
2 3 + 0 1 1 1 0 6
2 3 - 0 0 0 2 2 |12
3 i + 4 0 4 3 6 | 39
3 3 - 0 3 3 7 3 |39
3 3 + 1 1 1 2 2 16
3 3 - 0 3 1 4 1 | 20

Table 1: Dimension and multiplicity of anti-symmetric states ofieaus cubic irreps for zero CM motiom
refers to value of cubic shell. The cubic irreps arg Ay, E, T1, and T, and refer to the spatial part of the
wavefunctions. Numbers below these irreps correspondetontiitplicity of the irrep within cubic shelh.
Last column gives the total dimension of anti-symmetritestB,, in cubic shelin.

The parametersy andrg are the scattering length and effective range, respegtivehey both
have units of length. The parametassandr, are the scattering volume and effective momentum,
having units of lengthand lengthi?, respectively. The perturbative analysis assumesagiat< 1
andrg/L < 1, as well as; /L% < 1 andr;L < 1.

The results, when expressed with dimensional units, angraieeto order 1/ for the T; states.
For E and A states, the results are accurate to ordef.1However, since results are presented in
units ofgg = r‘T‘]—’fZ (i.e. results are dimensionless), at most terms of ordet ark shown explicitly.
Only states perturbatively connected to the first cubiclshet 1 are shown. To facilitate the
presentation, a list of the various lattice sums and thainerical values that are inherent to these
calculations is given in tab. 2.

3.1 T Spin=3
This channel is only sensitive to the effective range,
8 a.l -5
— =1436m—=+0(L7). 3.3

Furthermore, there are no terms that come in at dfithe right-hand side of eq. 3.3.

3.2 T; Spin=5

£ a (3 a3 a 3_adr
£ 1132 (2 39| Do 2p%0
o m_+<2 2> e TeME TR

9 2 % 4
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Label Expression Numerical value
2 y AL —ann -1.21134
& | yhEA m — 47\ -6.37481
M = 23.24322
My >3 (—HW 18.3

Table 2: Lattice sums and their numerical values. Sums are overipletrof integerdi = (ny,ny,n;) such
that the denominator does not vanish. The lifait> o is implicit.

1
3.3 ET Spin=3

2
R <§+$z> i+ﬁ(L‘3).

£ niL 2 L2
(3.5)
34 A Spin=3
£ _,,,% (3 P
80_1+7m_ <2+$2+6$1> n2L2+ﬁ(L ).
(3.6)

4. Conclusion

| have presented finite volume effects for three identical-4g2 fermions in a box interacting
via short-ranged, repulsive interactions of ‘natural’esiResults are given for states in the first
cubic shelln = 1 and are valid up to order 17lfor the T; states and 1/t.for the A; and E states.
These results generalizéigcher’s formalism to three spin-1/2 fermions in a box.

A similar analysis can be performed on nucleons by the initbdn of isospin degrees of
freedom[9]. Here the spectra of states is extremely richthedstructure of the interactions is
complex due to the presence of tensor forces and pure s-Wese-Ibody interactions. Further-
more, at the physical pion mass the interactions are no tasfgeatural’ size and non-perturbative
formalisms must be employed[9].

Ultimately, LQCD will answer current outstanding nucleduypics questions, such as the na-
ture and origin of the tensor force and three-nucleon iotema. This work represents a necessary
step towards obtaining these answers.
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