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1. Introduction

Understanding the large distance behavior of asymptttifade gauge theories in terms of
the weakly coupled short distance degrees of freedom is arrolagllenge for theoretical physics.
In pure gauge theory with the standard Wilson’s action, traélable numerical data olt* lattices
indicates that there is no phase transition $¥(2) or SJ(3) and the theory should be in the
confining phase for all values of the coupling. Convincinguanents have been given [1, 2] in favor
of the smoothness of the renormalization group flows betweemwo fixed points corresponding
to the two limits. This suggests that it is possible to mateh weak coupling and the strong
coupling expansions of the lattice formulation. Howevewé consider the two expansions, for
instance for the averag®J (2) plaquette as a function @8 = 4/g?, there is a crossover region
(approximately 15 < B < 2.5) where none of the two expansions seem to work. This Sioiati
can probably be explained in terms of singularities in theglex 8 plane [3, 4] that at this point
are not completely understood. In these proceedings, verigtisthe weak and strong coupling
expansions of the density of states &&f(2) and compare them to Monte Carlo calculations. The
density of states is the inverse Laplace (or Borel) tramsfof the partition function. Its logarithm
can be interpreted as a "color entropy”. This is discussegdtion 2 where the basic concepts are
defined.

For the one plaguette model, the density of states is a fam¢kiat has better convergence
properties than the partition function [5]. This is expkinin section 3. We would like to know
if this property persists oh* lattices. The comparison between weak and strong expanaih
numerical calculations of the density of states for*daitice are summarized in section 4. More
details can be found in [6].

Knowing the density of states, we can calculate the pantifisction and its derivatives for
any real or complex value @. In particular, it can be used to determine the Fishersszefdhe
partition function [7, 8]. Locating these zeros in the coexg® plane and their volume dependence
is important to understand the large order behavior of thekveeupling expansion [4, 9, 10, 11]
at zero temperature and the nature of the finite temperatmsition [12]. Related questions have
also been discussed in a poster presented at the same copf§l8].

2. Thedensity of states

In the following, we focus on &J (2) gauge theory with Wilson’s action onl# lattice and
periodic boundary conditions. We denote the number of @tgs./, = 6 x L4. The partition
functionZ(B) is the Laplace transform af(S), the density of states:

Z(B) = /(;2% dsn(s) e P, (2.1)
with

n(s) = |I‘|/du.5(s— T (1 (1/N)ReTr (Up))) 2.2)
p

We can interpret I((S)) as a "color entropy" (extensive). For cubic lattices withewen number
of sites in each direction and a gauge group that contaihst is possible to chang@ReTrU, into
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—BReTrU, by a change of variablds; — —U, on a set of links such that for any plaquette, exactly
one link of the set belongs to that plaquette [14]. This iegpli

Z(—-B) =e#"z(B) (2.3)

and consequently
n(24p—9 =n(y (2.4)

Thanks to this symmetry, we only need to knays) for 0 < S< .45 . Note that< S>= A4},
means< TrUp >=0.
We define

F O Ap) = In(NxAp, Ap)) /A - (2.5)

The symmetry (2.4) implies that
F(xAp) = F(2— X, A7) (2.6)
The existence of the infinite volume limit requires that
lim . o F (X, Ap) = T(X) (2.7

with f(x) volume independent. In the same limit, the integral ( 2.1)loa evaluated by the saddle
point method. The maximization of the integrand requires

(x)=B. (2.8)

3. Theoneplaquette case

In the case of the one plaquette model, the density of statghifollows from the explicit

form of the Haar measure: 5
Mpl.(S) = I—T\/S(Z— S (3.1)

At leading order, the larg@ behavior of the partition function is determined by the hédraof
n(S) nearS= 0. The fact than(S) 0 /S for small Simplies Z O B~3/2 for large 3. The 1/
corrections can be calculated by expanding the remainictgrfa/2 — Sin powers ofS. One then
sees that a series with finite radius of convergence becomasyenptotic series if we integrate
overSfrom 0 too (instead of 0 to 2). In addition, the large order behavioheféasymptotic series
is determined by the non-analyticity of, (S) at the maximal value o (2 in this case).

These properties are in agreement with the general idedah@darge order behavior of the
weak coupling expansion is determined by the behavior ali sregative coupling [15, 16]. In the
present case, small negatigé means thap is very negative. In this limit, the largest possible
values ofSdominate the integral (in agreement with what we explair®a/a). It would be inter-
esting to understand if this property persistsLdrattices. Unfortunately, numerical values of the
weak coupling expansion of the plaquette are not availaisl&J (2) and we will have to rely on a
model proposed in [9].
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4. Approximate formsof n(S)

Numerical calculations afi(S) can be obtained by patching plaquette distributions mlidtip
by the inverse Boltzmann weight at various valuesBofin [6] we presented numerical data for
L4 lattices withL = 4, 6 and 8. For these values bf finite volume effects are not too large
and plaquette distributions are broad enough to allow areddy smooth patching. The volume
dependence is resolvable only for small valuesSafhere a behaviotn(S)/V is observed for
In(n(S)). The coefficient of the singularity was calculated to(Bg4) — (5/12)L~* in reasonably
good agreement with the numerical data.

The numerical results fof(x) were compared with expansions that can be obtained from the
strong and weak coupling expansions of the average plagukitermediate orders in these ex-
pansions show a good overlap for valuesSahat correspond to the crossover (see Fig. 1). The
convergence of the new series can be related empiricallyoget of the series for the average pla-
quette. The general picture that was obtained by trying itbwn series is that the converted
series inherits the asymptotic behavior of the originaleserThe conversion of the series is per-
formed using the saddle point equation. For the strong aogiplve expand about= 1 (we remind
thatx = S/.4}, see section 2). Graphs of the accuracy of the expansiorcegssive orders, show
a crossing characteristic of a finite radius of convergerea x= 0.5. This is consistent with a
crossing neaB ~ 2 for the plaquette (fof = 2, the average plaquette is about 0.47). For the weak
coupling, we expand about= 0. Accuracy graphs show consistent improvement as the arder
creases (with possible saturation) whea 0.4 for f(x) and3 > 3 for the plaquette. However it
should be kept in mind that the large order of the series fepthquette has been modeled rather
than calculated explictly. For details and graphs see [6].

The weak coupling expansion determines the logarithmigutarities ofIn(n(S)) at both
boundaries. When these singularities are subtracted wanobtbell-shaped function that can
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Figurel: Weak and strong coupling expansionfoét a few intermediate orders.
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be approximated by Legendre or Chebyshev polynomials. Eeafy, the determination of the
expansion coefficients based on the discrete orthogorwdlitiie Chebyshev polynomials (rather
then numerical interpolation followed by numerical intigmn) seems the most stable.

5. Calculation of Fisher’'s zeros

One motivation for this work is to improve our ability to deténe the zeros of the partition
function in the complex3 plane. For reference, it is useful to understand the limitadf the
reweighting MC method. In order to estimate the errors inltication of the complex zeros, we
considered the changes in the location of the zeros of thengaimaginary part due to statistical
fluctuations. We considered 200 sets of 40,000 valu&paftked at random out of the large sample
of values (bootstraps) generated = 2.225. For each of the 200 sets, we calculated the zeros of
the real part on a small grid with typical distance betwedghi®oring points of the order of 18.
Using this procedure, 383895 zeros of the real part weredowe then studied the distribution of
these zeros using a 200 by 200 grid in heomplex plane. The results are shown in Fig. 2. In
this contour plot, the outer contours go through the binshhge 20 zeros, the first inner contours
correspond to 60 zeros, the next to 100 zeros etc.. The @faenfidence [8] in the Gaussian
approximation for 40,000 independent configurations asasehnother estimate (red boxes in Fig.
2) of the region of confidence discussed in [10] are shown ngifaph for reference. It is clear
that as we get closer to the boundary of the region of confilghe distributions get wider.

It is easier to look at horizontal sections of this distribot We then have simple histograms
with 200 bins. The results are shown in Fig. 3for3 = 0.1, 0.115, 0.13 and 0.145. This allows
us to observe the broadening of the four central pealdsng8 increases. For instance, the two
most central peaks are quite narrow uplto 8 = 0.1, but their width becomes comparable to
their separation whehm 3 > 0.13. One should bare in mind that such distributions shbeld
understood together with the interlaced distributionstiar imaginary part which follow similar
patterns. It is clear that complex zeros found in regionsrelieere are broad distributions are
unreliable. The improvement in this situation obtained byng theB independent density of states
presented above is discussed in a poster [13].

6. Conclusions

We have calculated numerically the density of statesSd(2) lattice gauge theory. The
intermediate orders in weak and strong coupling agree wedlni overlapping region of action
values as shown in Fig. 1. However, the large order behawdbthese expansions appear to
be similar to the corresponding ones for the plaquette. rdeleffects can be resolved for small
actions values. Corrections to the saddle point estimatd teebe developed more systematically.
Aprroximation of a subtracted quantity by Chebyshev poigrads looks very promising. We also
plan to use this method to study abelian gauge theories anidrieN behavior ofSJ (N) gauge
theories where interesting results based on the densitatafsshave already been obtained [17].
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SU(R); 4x4x4x4; B =2225 d=0.20
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Figure 2: Distribution of zeros of the real part of the partition fuiectin the complex3 plane and regions
of confidence described in the text.
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