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1. Introduction

Given a quantum statey) and a corresponding density matpx= |) (| let us introduce
two observer# andB = A, such that observed sees only degrees of freedom complimentary to
degrees of freedom seen by obsereThen one can form a reduced density matrix for observer
A: pa = Trgp, and define the entanglement entropy as the von Neumann entropy oédeshates

Sa = —Trapalogpa = - AilogA;, (1.1)
|

whereA; are eigenvalues of the reduced density matrix. The entanglement eiStepy for a
product state, and is at maximum for a maximally entangled stateSQ< 1[ebit].

As a simple example consider a bipartite systdihn= cosO| 1a) ®| |s) +Sinb| [a) ®| Ts)-
The reduced density matrix s = cog 8| 1)(1 | +sir? 8| |)(| |, while the entanglement entropy
is

Sa = —2co Blogcosh — 2sirf Blogsind, (1.2)

and takes its maximum value of log2 when €8s= %
One of the more interesting application of the entangle-
ment entropy is its use as a probe of phase, which is espe- !
cially important in situations where an order parameter is not
known. It turns out that in confining gauge theories the en-
tanglement entropy may show an interesting non-trivial be-

havior. First it was studied in gravity duals of confining large

N gauge theorieg][1], where the following geometry was con- SR - S
sidered (see Fid] 1) 7

A =R+1x], ° 8 °

B = RI-1y (R-T)), (1.3) Figure 1. Partitioning by two imag-

inary surfaces into regiors andB.
herel, is a line segment of length It was observed that

at length separatioh= I the entanglement entropy exhibits a non-analytical change in behavior,
reminiscent of a phase transition.
A natural question to ask if this behavior is relevant for
small N gauge theories. This question was first addressed R
in Migdal-Kadanoff formalism[[2]. Subsequently other mea-[— T
sures of entanglement (purity) f&J (2) gauge theory were =
studied in Monte Carlo simulationg] [3]. The results of the
Migdal-Kadanoof study are reviewed in this proceedings.
The expression for the von Neumann entanglement en
tropy is obtained using the replica tricK [@, 5}:replicas of
the system (with regioB integrated out) are glued along the
time boundaries of regioA. We demonstrate the procedure
for a 20 system in Fig[]2. Taking the trace of the combined
system we obtain its normalized partition function

Zn(A
Trpa = ”Z(n),

Figure 2. Z, for 1+ 1 dimensional
gauge theory.

(1.4)
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whereZ = Z; is the partition function of the original system. Then after performing analytica
continuation to reah one obtains the entanglement entropy

(1.5)

R R A7
S= o Im SnTPA= =M Gn zn

We apply the described techniquedd (N) gauge theory ild = d + 1 dimensions

Z:/|I_|dU| |;|efsp, (1.6)

whereS, = SUp) = —B/(2N)TrUp + h.c. is a standard Wilson lattice action with the plaquette
variableUp = [icgpUr andf = 2N/g? is the inverse lattice coupling. The gauge invariant action
is a class function and therefore allows for character expansion

e = > Fedixr (Up) =Fo <1+ ; Crerr(Up)> ; (1.7)
T r#0
wherec; = Fr/Fy < 1 andf, = [dUe SY) 2 xx(U).

2. SJ(N) gaugetheory in 1+ 1 dimensions: Exact solution

We start with exactly solvable 2-dimensiorsl (N) gauge theory (for an overview and large
N treatment of zero temperatutgN) gauge theory see Ref] [6]). At finite temperature the gauge
theory leaves on aR x S; manifold compactified in time direction with period L. The corre-
sponding lattice theory is formulated on Bnx N; time direction periodic lattice, with space-time
cut-offaandaN; = 1/T andaN, = R

After the partition function is character expandgd](1.7) one can consagdieus contributions
to it from minimal surface elements bounded by a single I3ép

f({a};0A) =1+ ;adixi(ﬂA), (2.1)
i#0

The contribution to the partition function of two such surface elemArasd B with a common
boundaryAN B, which is integrated out, defines a new elementary surface

A B ——

f({c};0(AUB)) :/d(Aﬁ B)f({a};0A)f({b};dB) = 1+;Jcidixi(o”'(Au B)), (2.2)

wherec; = gibj. Thus the junction of the surfaces in the space of character coefficéergpre-
sented by an ordinary product.

Now for any 2-dimensional surface one can integrate all the internal linkki§ way joining
elementary surfaces). The resulting expression for the partition furistion

Z— [ 70U S Fdx: (Uan). (2.3)
l€dA r
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whereA = N;N; is the area of the total surface in plaquette units dAds the contour enclosing
the surface. A similar result follows for the partition function of the gluedeysZ,,, but with the
corresponding surface aréda = nA = nN;N; and perimetedA,,.

In order to evaluate the perimeter integral one needs to set the spatialdrgloonditions
(BC). The free BC produces a trivial resdlt= F§' andSy = 0. Therefore we set the periodic BC.
The perimeter integrals fat andZ, result in

Z: /dv/duxr(uvuTvT):/dvdlxr(V)xr(vT):dl, (2.4)
r r
T
Z, /dul---dUn;rXr(Ul);{;)l(r(Un) Xr(Ul)-r‘]'_)gf(U”T) = ;_17 (2.5)
r r r

and one can obtain the entanglement entropy

Jd Z,

Sh=— —1"

zr7éoc'ro\|090ﬁ/dr2
onzn '

(2.6)
1+ zr;éo C'rA

= log(1+ ;)Cf) -

n=1

It is interesting to note the®a(l) is I-independentl # 0, and its behavior is similar to end-point
phase transitios (I = 0) = 0.
In the expression for the entanglement

entropy [2.6) one can truncate the series if = 45— I

A>> 1 or, equivalently, if3 is small. Let us af  pohee T e ]
- . A=10, exac *

be more specific and consid8d (2) gauge I t

theory. Thernc, = I11(28)/11(2B), where

In(x) is the modified Bessel function. In <

strong coupling limit

1

l2r+1(2B) ~ m32r+17 2.7)

where 0< 2B << V2r +2, ;

Figure 3: J(2) entanglement entropy at various lat-

terms of expressior] (2.6) to a given precis-
sion to get

B A
Sa=¢&(1+logd—loge), €= (2 .
(2.8)
We present the results for the entanglement entropyjet HimensionaBJ (2) gauge theory
as a function of the lattice coupling for various surface afeasl,2 and 10 in Fig[]3. FoA=1

we also plot the strong coupling perturbation result.
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2.1 Higher dimensions. Migdal-K adanoff treatment

The higher dimensionaBJ (N) gauge theories cannot be
solved exactly, however the Migdal-Kadanoff (MK) approximate
approach is known to produce robust results in studies of phase
structure of the models. The standard MK decimation procedur !
(A-transformation) inD = d + 1 dimensions is defined by the __,L
following recursive steps (see Fig. 4) [ R PR B

Zlfb e .
e SV = [Z FrAerr(U)} : (2.9) /

F = /dUe‘ZbSP(W;xr*(U). /
r Figure 4: lllustration of the
Here A is the scaling factor of the renormalization group (RG) migdal-Kadanoff procedure.
transformation = AP~2 is the factor by which we strengthen
the interaction on the resulting coarser lattice &nd A? is the
surface of the new elementary plaquette in units of plaguettes of
the underlying fine lattice. One can choose between two orderings ofrhowmithg and strength-
ening of the couplings stepb:= 0 corresponds to Migdal, whille= 1 to Kadanoff prescription.
As an example consider a gauge theory formulated ir-d 2limensional box. One can then
decimate out all bulk degrees of freedom and be left only with the perimdegral. Setting free
boundary conditions one then gets

zZ= /dUde({ch_,i};uTvuvT)f({ct,i};V) =1+ ; Cyit ¥ OxidjcijD}j,  (2.10)
i#0 i,]#0
where
f({c:};0A) =1+ ;dicz;iXi(dAz)v Z= X%yt (2.11)
i#0

ot = | dek<v*>xi<v>xj<v>=<n'l‘u)(VEJ (En'z n’s) (';n'Z n’3> (212)

are coefficients of the Clebsch-Gordan sefig8 x 2 = 3, DK 2" for the Kronecker product
of irreducible representations (s¢g [2] for details).
Now we can apply MK procedure in order to com-

pute the partition functions for ordina&and gluedz, =
systems, see Fid] 5. In order to cancel out the contribu-
tion from the bulk we cary out decimations fg@y and

Z in exactly the same manner. First we start with the
standard MK decimation procedur&-{ransformation)
(B-9). The decimation should be altered when the lat-
tice spacing becomes equal ltdthe smallest scale in
the problem). This affects onlyplaguettes, which have

and

Figure5: Z,for 2+ 1 dimensional theory.
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one link spanning the entangled region. In this case one
still can move plaquettes ID — 2 direction but the tiling
is done withA plaquettes

Zl—b
e = [Z Fﬂdrxrw)} o R [wedsUZyw). @)
r
We refer to such a procedure pgransformation. All the other plaquettes are unaffected by this
change and are decimated according to the standandi(isformation) procedure.

If we choosd to extend iny direction, we can write the final formula for the entanglement
entropy [B]

Sa= —#}ﬁlogZ—% (2.14)
where the dot stands fof = 2.X " and
Z=1+ ;(Cx,icx,icy,i + Y (CiCriCyi)?dic ;& DY, (2.15)
i i,170
7o )
lft?j — /dU (1—1— ;dicﬁiXi(U)> EX](UT), (2.16)
iZ0

@I XICy

fn ;(Ciiésx,icy ) ('09 <1+ ; d;C, | u) + ; djét,th) - (217)
i#0 j#0

The final expression appears to be very complicated. However, orenedyze its behavior as
a function ofl. First we simplify the expression by choosing the geometry with specific symmetr
so thatc?; = ¢;; = ¢. Note that the dependance bis encoded in the values of. Note thatl
regulates when -transformation is switched to-transformation, i.e. it sets the initial value for
¢’(mp) underp-transformations. Next we analyze the RG flowsof(2) gauge theory foc’(m) as
a function of number of iteration® under Migdal recursion depending on the starting point. We
simplify the numerical simulation by considering a starting action in the wilsoniam éorN, = 1
lattice. Note however that even after the first iteration step the action is ofjke gilaquette form,
but generally has all irreducible representations.

We show the projection of the RG flow on the fundamental-adjoint plain in[Figveésobserve
that depending on the starting couplifgwhich sets thé-scale, the flow is in different directions.
This is a clear indication of a phase transition like behavior. For the scate fae choosad = 1.1,
which is known to map correctly the mixed action phase diagfam [7]. Theitignsccurs at
B: € 0.(62,0.65), which corresponds to length scéfe

ls/1c € (1.56,1.66), (2.18)
wherel. = 1/T; is the QCD scale.

3. Summary

We studied the entanglement entropydin- 1 SJ(N) gauge theory. Thd = 1 theory was
solved exactly. Setting periodic BC we obtained a non-zero univerfzé ¥ar the entanglement
entropy, which is independent of the siz@nd-point transition).
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Figure 6: Migdal decimation flow for 3+ 1 dimensionalSJ (2) gauge theory. Projection kci/z andc3;
(B,A) are indicated.

Using MK decimation we approximately computed the ratio of partition functionsesmnd
tanglement entropy fod > 2. For 3+ 1 QU (2) gauge theory we demonstrated that there is a
non-analytical change in the RG flow of character coefficientich defineSa. This allowed us
to find the length scale where the transition ocdif& € (1.56,1.66), which is comparable to the
valuel? /I = 2 derived for infiniteN theory [3].

It is worth to point out that other measures of entanglement, such as tig pue Trp?,
Tsallis entropys,; = 1/(q—1)(1— Trp%) and Rényi entropyd; = 1/(1—q)log Trp% (specifically
atq=2) are all dependent af and therefore will show non-analyticity in the RG flow.
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