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1. Introduction

The Svetitsky-Yaffe conjecturg][1] states that the Yang-Mills finite tempezatansition in dimen-
siond + 1 is described by an effective spin modeldrdimensions with short range interactions.
This relationship is analyzed forgU(3) YM theory with adjoint Polyakov loop potential and the
SU(4) YM theory in terms of inverse Monte-Carlo (IMC) methods. Ways to perftMT are
provided by demon methodd [B, 3]. Specific thermalization effects of these meuliscussed to
obtain reliable results. Taking these effects into account we compareresgonding results to a
Schwinger-Dyson approach to IM{ [4].

2. Effective models for Yang-Mills theories
We start with the well-known lattice Wilson action
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and perform astrong coupling expansioffor small 8). Since the resulting ‘operators’ (Polyakov
loop monomials) arelimensionlesshere is no natural ordering scheme. We therefore use a trun-
cation scheme based on the ordering by poweys which are closely related to the dimension of
the corresponding group representations and ordering by the distarass which the Polyakov
loops are coupled. In compact form the strong coupling expansionés gy
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with the basic building blocks

Swi = Xa(Px)X%(Py) +cc., L=(xy). (2.3)

Herer counts the number of link operators contributing at each order. Théiccieafscﬁl, @,

are the couplings between the operatByg,, sitting at nearest-neighbor (NN) links = (x;,y;)
in representatio’Z;. The effective action hence describesietwork of link operatorghat are
collected into (possibly disconnected) ‘polymers’ contributing with Welg@ . One expects
the ‘weights’ or couplings to decrease as the dimensions of the mvolve@lsm[tatlons and inter-
link distances increase. In a strong coupling (sn@llexpansion truncated a&t(8N) one has
r <kand the additional restrictio?y| + - - - +|%r| < kwith |%Z| = 5; pi for a given representation
Z of SU(N) with Dynkin labels[py, ..., pn].

Effective models for SU3) Yang-Mills
To lowest ordew’(B™) one finds the universal effective action

Seff = C10 % Sty =M %( PP+ P Py). (2.4)
Xy

Xy

Our truncated model to order(3?) and withnearest neighbor interactiomeads as

Seft = A1 %(XlO(t@x}XM(L@y) +cc)+A ;(Xzo(gzx)on(@y) +c.c.)
Xy

. (2.5)

+23 Y (X10(Px) Xor(Py) +c.c.)?.
b)

For a discussion of effectivBU(3) Polyakov loop models sefl [B, 6].
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3. Inverse Monte-Carlo — the basics

The inverse Monte-Carlo (IMC) method] [4] allows to determine (effectaetjons from given
configurations. In our case, these are Polyakov loops obtained fiagegonfigurations generated
with the Wilson action. Via IMC we determine the couplings of truncated effectations which
(ideally) would give rise to the same distribution of Polyakov loop configunatio

The IMC procedure is based on ansatzfor the effective action of the typ&s = 5 AiS.
Translational invariance of the reduced Haar measure leads to Scimiiipgen (SD) equations
[@]. They constitute amverdeterminedinear system for the effective couplingswhich may be
solved by least-square methods (déd][8. b, 10]). A second way tordie¢ethe couplings; is the
demon methodhich was successfully applied 8J(2) YM in [L1]]

4. Microcanonical demon method

Based on the large volume relation between microcanonical and canomseshble in statistical
physics additional degrees of freeddiigmons”) are used to simulate the effective theory together
with the demons at a fixed total energy/action| [12]. The demon is used agmntimeter” t
measure the couplingf the corresponding part of the effective action.

To simulate a microcanonical system with actj?] = 5; AiS[#?] we transform the canon-
ical measure to the microcanonical one,

P[22, Ep] 0 exp( - PRIC [P +Eb))  —  SIS[#] +Eb—Elgal- (4.1)

Each demons’ energl}, is distributed according tp(EL) O exp(—AEL), Ai depending on
(S). The constrainEy, € [—E), Ep], Ej < = leads to an invertible relatiofEf, ) = fi(A;). Couplings
are obtained via the demon method in the following way:

1. Simulate the microscopic (full YM) system without additional demons.
2. Reduce the system for a chosen configuration to a Polyakov looguaoation.

3. Perform a microcanonical simulation of the reduced Polyakov loop raysti¢h coupled
demons. As discussed below the thermalization procedure should bedhaadt®us.

4. The mean energy of the demons is directly related to the couplings of duthefftheory.

Tuning the microcanonical demon

In the microcanonical methaohe YM configuration is reduced to a Polyakov loop configuration
to start the microcanonical run. Therefore the methobighly sensitiveo the chosen starting
configuration. Thus, the effect of choosing specific (well thermalizedfigurations withS |Config

in the vicinity of (S§)y,, is analyzed below.

For smaIIE0 thermalization problems of the demon arise due to the small acceptance in the
update procedure. E' is too large the demon is able to (and generically does) take away much en-
ergy from the effectlve system. Thus, configurations within the micrataabensemble become
independent of the starting configuration after the reduction step. Pphelskems are circumvented
in the following way:

1. Choose a large energy rangeE), E}] of the orderg'(|(S),, |)-

2. Reduce the YM configuration to the Polyakov loop configurafign

3. For a few times (10 in our case) perform microcanonical simulations@yiths input con-
figuration in every run. The demons’ start energies are given by ibhectation vaIuQE >
in the preceding run.

4. The final run lasts for the same Monte-Carlo time as the preceding rdris ased to mea-
sure(EL) (B).
3
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Finally the contact between microscopic and microcanonical system is batedn one
configuration Further improvements should be possible by usiegrzonical demomethod with
improved “thermal contact” to the microscopic system.

5. Canonical demon method

In order to use the full statistics of the microscopic system we apply the folipalgorithm [1B]:
1. Simulate the microscopic system accordingt®' until thermalization.
2. Perform the reduction of the microscopic system to the effective system.

3. PerformNmicro microcanonical updatesf the joined system of effective model and demon
energies. These updatesmiat change the total enerdy+ E,.

4. Freeze the demon system and update the microscopic fields up to a npendeet config-
uration. After that proceed again with sidp 2.

To deal with thermalization effects of the demons’ energies we begin the neeasut afteNierma
microscopic configurations with a suitably cho$ég:mar

6. Observables for SY3)

We discuss the YM theory onN x N-lattice. The Polyakov loog?y is measured in terms of its
lattice average,

3
P_szzx, V =N3. (6.1)

Since we deal Wlth phases where the traced :
Polyakov loop is located halfway between Big(3) 1t }

center elements we project the value of the traga¢b | <
Polyakov loop onto the nearéft-axis and define a 0: b‘w

rotated Polyakov loopy (see Fig[]1) 4l

ReP Pes -2
Pot=1{ —iReP+LImP :Pec.s . (62) !
—IReP— LImP :PeF"
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Figure 1: Fundamental domains &U(3).

7. The SU3) YM phase diagram with adjoint potential
An adjoint particle with mas®! and spins at temperatur@ leads to an effective potentidl [14]

[(25+ 1)M?T?

AVeff = 7_[2

Kz(M/T)Xll(@)] =Thx(%), h<O. (7.2)
Nevertheless topological excitations allow for a positiend we therefore study a lattice action
1
S= 1-—RetrUg | +H Kz 7.2
Bg( N D> ZXM( %) (7.2)

with standardsU(3) Wilson action and adjoint potential with unconstrained paramntéter
Simulations of this system near the confinement-deconfinement phase traosito12 x 2
lattice with varyingB andH show the phase diagram (Fid. 2) in terms of the rotated Polyakov loop
Pot- At H = 0 the well-known undirected and center-directed Polyakov loop strisctefated to
(de)confinement appear. In the lower half-plane an additional steuatises where the Polyakov
loop points intg‘anti-center” direction.
The additional potential term is already contained in the effective mdél (&/B)therefore
not only analyze the (de)confinement transition, but also look for alderanalysis of the anti-
center phase.
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7.1 The confinement-deconfinement transition

After simulating the (de)confinement phase
transition (the upper black curve in Fig. 2)

we used IMC with the SD equations as ' TR

well as the (micro)canonical demon me- 20, “‘A,e,v'"“‘A e x,'w,g,%,.‘,%
thod for deriving couplings of the trun- , il p;'nl o 4»‘\%" “z“ff:\},“
cated effective theory. The programming g 3q ’ ll‘éimv @gj“v}g& : M‘\M
codes were checked by simulating effec- 2.0 “‘Afgg‘,}‘:;ﬁgzy'W'
tive theories with fixed couplings ame- 150 "X{,‘X%},ﬁ \\\
producing them consistentlyith the SD(Pot) 65 ;i;" \\
eqguations and demon methods. 0. )

The computed couplings correspond-
ing to one YM coupling3 are then used
to simulate the associated effective the-
ories with a Metropolis algorithm. The 5.0
resulting expectation values of the rotatdtigure 2: Phase diagram @&U(3) YM with adjoint potential
Polyakov loop are given in Fid] 3 (leftaccording to Eq.[(7]2).
panel). Here the SD equations fail to re-
produce the phase transition point whereas the demon metbpasiuce(P,:) near the phase
transitionshowing a better behavior than the SD method in the vicinity of the critical coupling

20
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Figure 3: Expectation values of the full theory compared to valuesipced with effective models after
applying IMC methodsLeft: (De)confinement transition & = 0. Right: Anti-center phase g8 = 6.05.

7.2 The anti-center phase

At B = 6.05 (vertical black curve in Fid] 2) we analyzed the anti-center phase@mgared the
resulting expectation values Bb:. Whereas the methods show a quantitative difference in render-
ing the critical point near the (de)confinement transition the expectatioes/aiR,; indicate a
qualitative differencén the present case (Fifl. 3, right panel). While the SD equations praduce
smooth behavior with high accuracy deep in the deconfined phase théy faproduce the anti-
center phase completely. In contrast demon methodseargible to the full phase structur&his
behavior in the anti-center phase was analyzed with 750 microcanonsetfd = 6.05,H = 0.2
using different randomly chosen starts. The resulting couplings are gliottdne three coupling
phase diagram of the effective theory which shows a symmetric, ceneatelirand anti-center
directed phase (see Fig. 4). Even far away from a phase transition iithescopic theory the
corresponding effective theory can be located in the vicinity of a phassition of the effective
model.
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8. Using thermalized configurations for the microcanonicabdemon

In the microcanonical demon method the starting configuration can be crevsdomly from the
full YM ensemble. In contrast we can take configurations vith,qq ~ (S)yw (‘well thermal-
ized”). In the deconfined phase @t= 6.05, H = 0 the projection of the three couplings to the
A1-A2 plane comparing the different starts is shown in fig. 5 (left panel).

The extent of the coupling distribution

shrinks for the well thermalized configurations, ~ 607 _
compared to the randomly chosen configura® 9.98 symmetric _
tions. Additionally the couplings of the well .04 ., anti-center

thermalized configurations correspond to al-
most the same rotated Polyakov loop whereas —9.(2)%
the couplings derived from the randomly cho-  }, —03
sen configurations show a much broader dis-
tribution of the corresponding rotated Polya-

.é)hase boundaries
kov loops. microc

an. couplings-

Figure 4: Phase boundaries of the three coupling effec-
9. Thermalization tive model and couplings derived from the microcanon-

effects of the canonical demon ical method a3 = 6.05 andH = 0.2.

One parameter of the canonical demon method is the number of microcarswésgls per micro-
scopic configuratioMmicro. We analyzed the distribution of the couplings in order to read off any
thermalization effects (Figﬂ 5, right panel). The microcanonical distribig@mes as a reference.

Obviously the thermalization of the effective model has to be taken into atcadfith a
smallNmicro NOt enough time is spent to thermalize the effective system completely. Themeas
couplings refer to a non-equilibrium state of the effective model. Only in tiye Myicro limit the
couplings describe the thermal equilibrium of the effective model. Thisviehis given by the
fact that a configuration taken from a thermalized ensemble of the micriggaty) system isnot
necessarily a representative of an equilibrium state of the effectiveytl[@)]. Additionally the
couplings obtained via Schwinger-Dyson equationsidbcorrespondo the ones computed with
the canonical demon method.

0.02 0.02

) c L Microcan.

- We||rt %??nrgllszteaét . .. 4 - Nmicroiz 1 B

0.00} A 0.00f Nnmicro =10 :

L i L S'\é%'\?\?.oﬁylsogn i

—0.02- 1 —oo02 .

A2 1 A 7 .

—0.04 Lo 1 —o04 .

—-0.060 ) RN i —0.06 . IR |
—0.08——75 —0.26 022 018 9% 30 —0.26 —0.22 ~0.18

A1 A1

Figure 5: Left: Couplings obtained via the microcanonical demon methot wihdomly chosen and well
thermalized configurationsRight: Thermalization effects due to differeNkicro Of the canonical demon
method.

10. Outlook to SU4) YM

For the finite temperature phase transition of 8é{4) YM theory on a 6 x 2 lattice we applied
the IMC method with the canonical demon method. The effective model is aajizia¢ion of the
three coupling model foBU(3) YM,

6
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Seft = A1 ; (X100( Px) Xoo1(Py) +C.C.) + Az ; (Xo10(Px) Xo10(Zy) +c.C.)

Xy) Xy) (10.1)

+A3 ; (X200(Px) Xoo2( Py) + €.C.) + Aa ; (X100(P) Xoo1( Py) +C.C.)%
Xy) Xy)

Even forSU(4) the demon method is a robust way of obtaining couplings of effective Polyak
loop models describing the phase transition (see[Fig. 6).

11. Conclusions 20
““['yang-Mills +*-.-—- . o osetstirTe’

We studied and compared two ways of obtain-  |can.demon ¢ , 15T
ing couplings for effective Polyakov loop mod- ;5|
els which are related t8U(N) YM theories.
The application of the inverse Monte-Carlo me-
thod with SD equations to th&U(3) YM case Lo |
leads tostable results only far awafrom the {IP)
phase transition. In the vicinity of the phase 05 ! 1
transition demon methods lead to a much bet- .
ter sampling of expectation values of the Polya- g'"“f"“f“"'7 L
kov loop. We tried to reproduce the anti-center 960 965 9.70 9.75 9.80 9.85 9.90 9.95 10.00
phase of a model with standard Wilson action. o B -

and adjoint Polyakov loop potential by SD andrigure 6: Finite temperature phase transition of
demon methods. The SD method fails to rec®J(4) YM on a 6x2 lattice.

ver the phase structure while demon methods are favorable even in thisTtesdemon method
can begeneralizedstraightforwardly to the case @U(4) YM leading to robust results in the
vicinity of the finite temperature phase transition. Combining our experienitedwoth methods
SD equations are less efficient than demon methods near first order tpdwasitions although SD
equations have proven to be very useful for the second order tranisit&J(2) YM [§].

When using demon methods much care has to be taken of different thermaliefi@ots.
Firstly with microcanonical demons the way of choosing microscopic cordiguns influences
the derived couplings. Secondly when using the canonical demon methodatization effects
(which cannot be cured as discussedif [15]) must be taken into d@ccoun
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