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In particular effective models forSU(3) YM with an additional adjoint Polyakov loop potential

are considered. The rich phase structure including a centerand anti-center directed phase is

reproduced with an effective model utilizing the inverse Monte-Carlo method. The demon method

as a possibility to obtain the effective models’ couplings is compared to the method of Schwinger-

Dyson equations. Thermalization effects of microcanonical and canonical demon method are

analyzed. Finally the elaborate canonical demon method is applied to the finite temperatureSU(4)

YM phase transition.
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1. Introduction

The Svetitsky-Yaffe conjecture [1] states that the Yang-Mills finite temperature transition in dimen-
sion d + 1 is described by an effective spin model ind dimensions with short range interactions.
This relationship is analyzed for aSU(3) YM theory with adjoint Polyakov loop potential and the
SU(4) YM theory in terms of inverse Monte-Carlo (IMC) methods. Ways to performIMC are
provided by demon methods [2, 3]. Specific thermalization effects of these must be discussed to
obtain reliable results. Taking these effects into account we compare the corresponding results to a
Schwinger-Dyson approach to IMC [4].

2. Effective models for Yang-Mills theories

We start with the well-known lattice Wilson action

SW = β ∑
�

(

1− 1
NC

Re trU�

)

, β =
6

a4g2 (2.1)

and perform astrong coupling expansion(for smallβ ). Since the resulting ‘operators’ (Polyakov
loop monomials) aredimensionlessthere is no natural ordering scheme. We therefore use a trun-
cation scheme based on the ordering by powers ofβ which are closely related to the dimension of
the corresponding group representations and ordering by the distanceacross which the Polyakov
loops are coupled. In compact form the strong coupling expansion is given by

Seff = ∑
r

∑
R1...Rr

∑
ℓ1...ℓr

cℓ1...ℓr
R1...Rr

(β )
r

∏
i=1

SRi ,ℓi = ∑
i

λiSi (2.2)

with the basic building blocks

SR,ℓ ≡ χR(Pxxx)χ∗
R(Pyyy)+c.c., ℓ ≡ 〈xxxyyy〉 . (2.3)

Here r counts the number of link operators contributing at each order. The coefficientscℓ1...ℓr
R1...Rr

are the couplings between the operatorsSRi ,ℓi sitting at nearest-neighbor (NN) linksℓi ≡ 〈xxxi ,yyyi〉
in representationRi . The effective action hence describes anetwork of link operatorsthat are
collected into (possibly disconnected) ‘polymers’ contributing with ‘weight’cℓ1...ℓr

R1...Rr
. One expects

the ‘weights’ or couplings to decrease as the dimensions of the involved representations and inter-
link distances increase. In a strong coupling (smallβ ) expansion truncated atO(β kNt) one has
r ≤ k and the additional restriction|R1|+ · · ·+ |Rr |< k with |R| ≡ ∑i pi for a given representation
R of SU(N) with Dynkin labels[p1, . . . , pN].

Effective models for SU(3) Yang-Mills

To lowest orderO(β Nt) one finds the universal effective action

Seff = c10 ∑
〈xxxyyy〉

S10,〈xxxyyy〉 ≡ λ1 ∑
〈xxxyyy〉

(PxxxP
∗
yyy +P

∗
xxxPyyy). (2.4)

Our truncated model to orderO(β 2Nt) and withnearest neighbor interactionsreads as

Seff = λ1 ∑
〈xxxyyy〉

(χ10(Pxxx)χ01(Pyyy)+c.c.)+λ2 ∑
〈xxxyyy〉

(χ20(Pxxx)χ02(Pyyy)+c.c.)

+λ3 ∑
〈xxxyyy〉

(χ10(Pxxx)χ01(Pyyy)+c.c.)2.
(2.5)

For a discussion of effectiveSU(3) Polyakov loop models see [5, 6].
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3. Inverse Monte-Carlo – the basics

The inverse Monte-Carlo (IMC) method [4] allows to determine (effective)actions from given
configurations. In our case, these are Polyakov loops obtained from gauge configurations generated
with the Wilson action. Via IMC we determine the couplings of truncated effective actions which
(ideally) would give rise to the same distribution of Polyakov loop configurations.

The IMC procedure is based on anansatzfor the effective action of the typeSeff = ∑i λiSi .
Translational invariance of the reduced Haar measure leads to Schwinger-Dyson (SD) equations
[7]. They constitute anoverdeterminedlinear system for the effective couplingsλi which may be
solved by least-square methods (see [8, 9, 10]). A second way to determine the couplingsλi is the
demon methodwhich was successfully applied toSU(2) YM in [11].

4. Microcanonical demon method

Based on the large volume relation between microcanonical and canonical ensemble in statistical
physics additional degrees of freedom (“demons”) are used to simulate the effective theory together
with the demons at a fixed total energy/action [12]. The demon is used as a “thermometer” to
measure the couplingof the corresponding part of the effective action.

To simulate a microcanonical system with actionS[P] = ∑i λiSi [P] we transform the canon-
ical measure to the microcanonical one,

ρ[P,ED] ∝ exp
(

−∑
i

λi(Si [P]+Ei
D)

)

−→ δ [Si [P]+Ei
D −Ei

total]. (4.1)

Each demons’ energyEi
D is distributed according toρ(Ei

D) ∝ exp(−λiEi
D), λi depending on

〈Si〉. The constraintEi
D ∈ [−Ei

0,E
i
0], Ei

0 < ∞ leads to an invertible relation
〈

Ei
D

〉

= fi(λi). Couplings
are obtained via the demon method in the following way:

1. Simulate the microscopic (full YM) system without additional demons.

2. Reduce the system for a chosen configuration to a Polyakov loop configuration.

3. Perform a microcanonical simulation of the reduced Polyakov loop system with coupled
demons. As discussed below the thermalization procedure should be handled cautious.

4. The mean energy of the demons is directly related to the couplings of the effective theory.

Tuning the microcanonical demon

In the microcanonical methodoneYM configuration is reduced to a Polyakov loop configuration
to start the microcanonical run. Therefore the method ishighly sensitiveto the chosen starting
configuration. Thus, the effect of choosing specific (well thermalized)configurations withSi |config
in the vicinity of 〈Si〉YM is analyzed below.

For smallEi
0 thermalization problems of the demon arise due to the small acceptance in the

update procedure. IfEi
0 is too large the demon is able to (and generically does) take away much en-

ergy from the effective system. Thus, configurations within the microcanonical ensemble become
independent of the starting configuration after the reduction step. Theseproblems are circumvented
in the following way:

1. Choose a large energy range[−Ei
0,E

i
0] of the orderO(

∣

∣

〈

Si
〉

YM

∣

∣).

2. Reduce the YM configuration to the Polyakov loop configurationC0.

3. For a few times (10 in our case) perform microcanonical simulations withC0 as input con-
figuration in every run. The demons’ start energies are given by the expectation value

〈

Ei
D

〉

in the preceding run.

4. The final run lasts for the same Monte-Carlo time as the preceding runs and is used to mea-
sure

〈

Ei
D

〉

(βi).
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Finally the contact between microscopic and microcanonical system is basedonly on one
configuration. Further improvements should be possible by using acanonical demonmethod with
improved “thermal contact” to the microscopic system.

5. Canonical demon method

In order to use the full statistics of the microscopic system we apply the following algorithm [13]:

1. Simulate the microscopic system according toe−SW until thermalization.

2. Perform the reduction of the microscopic system to the effective system.

3. PerformNmicro microcanonical updatesof the joined system of effective model and demon
energies. These updates donot change the total energySi +Ei

D.

4. Freeze the demon system and update the microscopic fields up to a new independent config-
uration. After that proceed again with step 2.

To deal with thermalization effects of the demons’ energies we begin the measurement afterNthermal
microscopic configurations with a suitably chosenNthermal.

6. Observables for SU(3)

We discuss the YM theory on aN3
s×Nt-lattice. The Polyakov loopPxxx is measured in terms of its

lattice average,

P≡ 1
V ∑

xxx
Pxxx, V = N3

s . (6.1)

FF

F ′

F ′′

F ′′

F ′

ReP

ImP

−2 −1 0 1 2 3 4

−2

−1

0

1

2

Figure 1: Fundamental domains ofSU(3).

Since we deal with phases where the traced
Polyakov loop is located halfway between theSU(3)
center elements we project the value of the traced
Polyakov loop onto the nearestZ3-axis and define a
rotated Polyakov loopby (see Fig. 1)

Prot =















ReP : P∈ F

−1
2ReP+

√
3

2 ImP : P∈ F ′

−1
2ReP−

√
3

2 ImP : P∈ F ′′
. (6.2)

7. The SU(3) YM phase diagram with adjoint potential

An adjoint particle with massM and spinsat temperatureT leads to an effective potential [14]

∆Veff = −
[

(2s+1)M2T2

π2 K2(M/T)χ11(P)

]

= T hχ11(P), h < 0. (7.1)

Nevertheless topological excitations allow for a positiveh and we therefore study a lattice action

S= β ∑
�

(

1− 1
NC

Re trU�

)

+H ∑
xxx

χ11(Pxxx) (7.2)

with standardSU(3) Wilson action and adjoint potential with unconstrained parameterH.
Simulations of this system near the confinement-deconfinement phase transition on a 123×2

lattice with varyingβ andH show the phase diagram (Fig. 2) in terms of the rotated Polyakov loop
Prot. At H = 0 the well-known undirected and center-directed Polyakov loop structures related to
(de)confinement appear. In the lower half-plane an additional structure arises where the Polyakov
loop points into“anti-center” direction.

The additional potential term is already contained in the effective model (2.5). We therefore
not only analyze the (de)confinement transition, but also look for a sensible analysis of the anti-
center phase.
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7.1 The confinement-deconfinement transition

After simulating the (de)confinement phase 0.00
0.05

0.0

0.10
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0.30

0.5
1.0
1.5
2.0

5.0
5.5

6.0
6.5

−0.5

β

H

〈Prot〉

Figure 2: Phase diagram ofSU(3) YM with adjoint potential
according to Eq. (7.2).

transition (the upper black curve in Fig. 2)
we used IMC with the SD equations as
well as the (micro)canonical demon me-
thod for deriving couplings of the trun-
cated effective theory. The programming
codes were checked by simulating effec-
tive theories with fixed couplings andre-
producing them consistentlywith the SD
equations and demon methods.

The computed couplings correspond-
ing to one YM couplingβ are then used
to simulate the associated effective the-
ories with a Metropolis algorithm. The
resulting expectation values of the rotated
Polyakov loop are given in Fig. 3 (left
panel). Here the SD equations fail to re-
produce the phase transition point whereas the demon methodsreproduce〈Prot〉 near the phase
transitionshowing a better behavior than the SD method in the vicinity of the critical coupling.

〈Prot〉

β

Yang-Mills
Schw.-Dyson

microc. demon
can. demon

5.00 5.05 5.10 5.15 5.20
0.0

0.2
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1.2

1.4

〈Prot〉

H

Yang-Mills
Schw.-Dyson

microc. demon
can. demon

0.00 0.05 0.10 0.15 0.20 0.25 0.30
−0.5

0.0

0.5

1.0

1.5

2.0

Figure 3: Expectation values of the full theory compared to values produced with effective models after
applying IMC methods.Left: (De)confinement transition atH = 0. Right: Anti-center phase atβ = 6.05.

7.2 The anti-center phase

At β = 6.05 (vertical black curve in Fig. 2) we analyzed the anti-center phase andcompared the
resulting expectation values ofProt. Whereas the methods show a quantitative difference in render-
ing the critical point near the (de)confinement transition the expectation values ofProt indicate a
qualitative differencein the present case (Fig. 3, right panel). While the SD equations producea
smooth behavior with high accuracy deep in the deconfined phase they failto reproduce the anti-
center phase completely. In contrast demon methods aresensible to the full phase structure. This
behavior in the anti-center phase was analyzed with 750 microcanonical runs atβ = 6.05,H = 0.2
using different randomly chosen starts. The resulting couplings are plotted in the three coupling
phase diagram of the effective theory which shows a symmetric, center directed and anti-center
directed phase (see Fig. 4). Even far away from a phase transition in themicroscopic theory the
corresponding effective theory can be located in the vicinity of a phase transition of the effective
model.
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8. Using thermalized configurations for the microcanonicaldemon

In the microcanonical demon method the starting configuration can be chosenrandomly from the
full YM ensemble. In contrast we can take configurations withSi |config≈ 〈Si〉YM (“well thermal-
ized”). In the deconfined phase atβ = 6.05, H = 0 the projection of the three couplings to the
λ1-λ2 plane comparing the different starts is shown in Fig. 5 (left panel).

The extent of the coupling distribution

λ1

λ2

λ3

phase boundaries
microcan. couplings

symmetric

center

anti-center

0.08
0.07
0.06
0.05
0.04
0.03

0.02 −0.02 −0.06 −0.10

−0.26−0.28−0.30−0.32−0.34

Figure 4: Phase boundaries of the three coupling effec-
tive model and couplings derived from the microcanon-
ical method atβ = 6.05 andH = 0.2.

shrinks for the well thermalized configurations
compared to the randomly chosen configura-
tions. Additionally the couplings of the well
thermalized configurations correspond to al-
most the same rotated Polyakov loop whereas
the couplings derived from the randomly cho-
sen configurations show a much broader dis-
tribution of the corresponding rotated Polya-
kov loops.

9. Thermalization
effects of the canonical demon

One parameter of the canonical demon method is the number of microcanonicalsweeps per micro-
scopic configurationNmicro. We analyzed the distribution of the couplings in order to read off any
thermalization effects (Fig. 5, right panel). The microcanonical distributionserves as a reference.

Obviously the thermalization of the effective model has to be taken into account. With a
smallNmicro not enough time is spent to thermalize the effective system completely. The measured
couplings refer to a non-equilibrium state of the effective model. Only in the largeNmicro limit the
couplings describe the thermal equilibrium of the effective model. This behavior is given by the
fact that a configuration taken from a thermalized ensemble of the microscopic (YM) system isnot
necessarily a representative of an equilibrium state of the effective theory [15]. Additionally the
couplings obtained via Schwinger-Dyson equations donot correspondto the ones computed with
the canonical demon method.

λ1

λ2

random start
well thermalized

0.02

0.00

−0.02

−0.04

−0.06

−0.08 −0.30 −0.26 −0.22 −0.18
λ1

λ2

microcan.
Nmicro = 10

Nmicro = 102

Nmicro = 103

Nmicro =104
Schw.-Dyson

0.02

0.00

−0.02

−0.04

−0.06

−0.08 −0.30 −0.26 −0.22 −0.18

Figure 5: Left: Couplings obtained via the microcanonical demon method with randomly chosen and well
thermalized configurations.Right: Thermalization effects due to differentNmicro of the canonical demon
method.

10. Outlook to SU(4) YM

For the finite temperature phase transition of theSU(4) YM theory on a 63×2 lattice we applied
the IMC method with the canonical demon method. The effective model is a generalization of the
three coupling model forSU(3) YM,
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Seff = λ1 ∑
〈xxxyyy〉

(χ100(Pxxx)χ001(Pyyy)+c.c.)+λ2 ∑
〈xxxyyy〉

(χ010(Pxxx)χ010(Pyyy)+c.c.)

+λ3 ∑
〈xxxyyy〉

(χ200(Pxxx)χ002(Pyyy)+c.c.)+λ4 ∑
〈xxxyyy〉

(χ100(Pxxx)χ001(Pyyy)+c.c.)2.
(10.1)

Even forSU(4) the demon method is a robust way of obtaining couplings of effective Polyakov
loop models describing the phase transition (see Fig. 6).

11. Conclusions

β

〈|P|〉

Yang-Mills
can. demon

0.0

0.5

1.0

1.5

2.0

9.60 9.65 9.70 9.75 9.80 9.85 9.90 9.95 10.00

Figure 6: Finite temperature phase transition of
SU(4) YM on a 63×2 lattice.

We studied and compared two ways of obtain-
ing couplings for effective Polyakov loop mod-
els which are related toSU(N) YM theories.
The application of the inverse Monte-Carlo me-
thod with SD equations to theSU(3) YM case
leads tostable results only far awayfrom the
phase transition. In the vicinity of the phase
transition demon methods lead to a much bet-
ter sampling of expectation values of the Polya-
kov loop. We tried to reproduce the anti-center
phase of a model with standard Wilson action
and adjoint Polyakov loop potential by SD and
demon methods. The SD method fails to reco-
ver the phase structure while demon methods are favorable even in this case. The demon method
can begeneralizedstraightforwardly to the case ofSU(4) YM leading to robust results in the
vicinity of the finite temperature phase transition. Combining our experiences with both methods
SD equations are less efficient than demon methods near first order phase transitions although SD
equations have proven to be very useful for the second order transition in SU(2) YM [8].

When using demon methods much care has to be taken of different thermalization effects.
Firstly with microcanonical demons the way of choosing microscopic configurations influences
the derived couplings. Secondly when using the canonical demon method thermalization effects
(which cannot be cured as discussed in [15]) must be taken into account.
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