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We study the influence of center vortices on the low-lying eigenmodes of the Dirac operator,

in both the overlap and asqtad formulations. For center-projected configurations, one finds that

the low-lying near-zero modes are present in the staggered (asqtad) formulation, but not in the

overlap and “chirally-improved" formulations. We argue that this is due to the absence of a field-

independent chiral symmetry in the latter formulations, when the Dirac operator is evaluated on

the very rough configurations generated by center projection. We also confirm and extend the

results of Kovalenko et al. [Phys. Lett. B 648, 383 (2007)], finding strong correlations between

center vortex locations, and the scalar density of low-lying Dirac eigenmodes on unprojected lat-

tices, in both asqtad and overlap formulations. It is found that the low-lying eigenmodes have their

largest concentrations in point-like regions, rather than on submanifolds of higher dimensionality.
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1. Introduction

Center vortices were introduced to explain quark confinement, and there are good reasons to
believe that a force strong enough to confine quarks must also break chiral symmetry spontaneously
[1]. Several years ago, however, Gattnar et al. [2] reported a puzzling result concerning the low-
lying eigenvalue spectrum of a chirally-improved version of the Dirac operator [3], when evaluated
on center projected lattices. Despite the confining properties of such lattices, these authors found
a large gap in the spectrum around zero eigenvalue. This implies, via the Banks-Casher relation
[4], a vanishing chiral condensate, and unbroken chiral symmetry. In the present work we suggest
that the large gap found in the chirally-improved and overlap Dirac operators, when evaluated on
confining, center-projected configurations, is related to the way in which chiral symmetry is real-
ized on the lattice. The Casher argument [1] for chiral symmetry breaking (χSB) is based on the
usual SU(N f )L × SU(N f )R symmetry of the continuum theory with massless fermions, with sym-
metry transformations that are independent of the gauge-field configuration. For overlap fermions,
however, the chiral symmetry transformations are gauge-field independent only for configurations
which vary smoothly at the lattice scale, while for the chirally-improved Dirac operator due to
Gattringer, chiral symmetry itself is absent for non-smooth configurations. Center-projected con-
figurations are as far from smooth as possible. Thus, for the overlap and chirally-improved Dirac
operators evaluated on these configurations, the direct connection to continuum chiral symmetry is
lost, and the Casher argument for spontaneous chiral symmetry breaking need not apply.

In section 2 we display the spectra of the overlap [5] and asqtad [6] Dirac operators, when
evaluated on normal, vortex-only (i.e. center-projected), and vortex-removed lattices. The asqtad
operator has a field-independent remnant chiral symmetry, and the eigenvalue gap disappears. Our
results support the view that center vortices alone can induce both confinement and chiral sym-
metry breaking.1 In section 3 we report on other correlations between center vortex location, and
the density distribution of low-lying Dirac eigenmodes, following the earlier work by Kovalenko
et al. [10]. These correlations are consistent with the picture advocated by Engelhardt and Rein-
hardt [11], in which topological charge is concentrated at points where vortices either intersect, or
twist about themselves (“writhe”) in a certain way. Dirac zero modes are concentrated where the
topological charge density is large, and therefore one would expect that the densities of low-lying
eigenmodes would be peaked in point-like regions. We provide supporting evidence for this type
of concentration. We work throughout with lattices generated by lattice Monte Carlo simulation of
the tadpole improved Lüscher-Weisz pure-gauge action [12], mainly at coupling βLW = 3.3 (lattice
spacing a = 0.15 fm) for the SU(2) gauge group. Center projection is carried out after fixing to the
direct maximal center gauge.

2. Thin Vortices and Near-Zero Modes

Fig. 1 displays the first twenty overlap eigenvalue pairs for a 164 lattice at βLW = 3.3. There
is a large gap around zero for the center-projected data, which implies zero chiral condensate. In
this case we see only five distinct eigenvalue pairs. This is due to the fact that in center projection
with Uµ(x) = ±12, the two colors decouple and the eigenvalue equation Dψn = λnψn is invariant

1For related results, cf. Alexandrou et al. [7], Gubarev et al. [8], and Bornyakov et al. [9].
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Figure 1: The first twenty overlap Dirac eigenvalue pairs on the Ginsparg-Wilson circle for a 164 lattice at
βLW = 3.3. The center-projected configurations show a four-fold degeneracy. Zero-modes in vortex-removed
configurations disappear for antiperiodic boundary conditions.

under charge conjugation.2 A four-fold degeneracy results. The vortex-removed data shows four
near-zero modes for each chirality. These correspond in number to the zero modes of the free the-
ory, independent of lattice size, and disappear when antiperiodic boundary conditions are imposed.
They are irrelevant to χSB. We have argued that the reason for the large gap in the vortex-only case
is the lack of smoothness of center-projected lattices, which results in a strong field-dependence
of the chiral symmetry of the Dirac operator, in contrast to the symmetry of the continuum the-
ory. If this is indeed the reason for the gap, then the gap should disappear, and χSB should be
recovered, under a suitable smoothing of the center-projected lattice. We therefore perform an in-
terpolation between full and projected configurations, reducing separation in the group manifold
between each link variable Uµ(x) in maximal center gauge, and its nearest center element, by some
fixed percentage. In Fig. 2 we show the low-lying eigenvalues for partial projections together with
the unprojected and center-projected lattices. We see that there is no really obvious gap in the
partially-projected lattices, even at 85% projection. This agrees with our conjecture that applying
the overlap operator to a smoother version of the vortex-only vacuum would give a result consistent
with χSB and the Banks-Casher relation. Staggered and asqtad fermions, on the other hand, do not
require a smooth configuration to preserve a subgroup of the usual continuum SU(N f )L×SU(N f )R

symmetry, and by the Casher argument [1] one would expect this remaining symmetry to be spon-
taneously broken by any confining gauge configuration. Indeed, Ref. [7] already reported that
〈ψψ〉 > 0 for staggered fermions on a center-projected lattice.

Fig. 3 shows the first twenty asqtad eigenvalue pairs. The low-lying eigenmode density actu-
ally increases for center-projected compared to unmodified lattices; the gap found in the overlap
and chirally-improved formulations has disappeared. Thus, for the asqtad operator, we have found
exactly what was expected prior to the results of Gattnar et al. [2]: the vortex excitations of the
vortex-only lattice carry not only the information about confinement, but are also responsible for
χSB via the Banks-Casher relation. The vortex-removed data develops a central band around

2This assumes that the Dirac operator has the Wilson or overlap (but not staggered) form. Thus, if ψn is an eigenstate
with eigenvalue λn, then C−1ψ∗

n is also an eigenstate, with the same eigenvalue [13].
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Figure 2: The first twenty overlap Dirac eigenvalue pairs from a single configuration on a 164 lattice,
antiperiodic boundary conditions at βLW = 3.3, for interpolated fields.

Imλ = 0 of eight doubly degenerate eigenmodes per chirality, which are a remnant of the 32 free-
field zero modes (four zero modes for each of four “tastes” times two colors), and play no role in
χSB. These modes again disappear using antiperiodic boundary conditions in one direction.
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Figure 3: The first twenty asqtad Dirac eigenvalue pairs from a 164 lattice at βLW = 3.3. The center-
projected configurations show no gap around zero. Zero-modes in vortex-removed configurations disappear
for antiperiodic boundary conditions.

3. Vortex surfaces and Dirac eigenmode densities

In order to clarify the role of the vortices in the topological structure of the vacuum, we study
the correlation between the density ρλ (x) of an eigenmode with eigenvalue λ , and the number of
vortex plaquettes (identified via center projection) which meet at a site. This is relevant because of
the picture advanced by Engelhardt and Reinhardt [11], in which topological charge is associated
with vortex intersections (Nv = 8) and “writhings" (Nv = 6). Following Kovalenko et al. [10], we
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define the correlator

Cλ (Nv) =
∑pi

∑x∈H(V ρλ (x)−1)

∑pi
∑x∈H 1

. (3.1)

Here the sum is over sites pi on the dual lattice which belong to Nv plaquettes on the vortex surface
(as identified from center projection); V is the lattice volume. At each such vortex site on the dual
lattice there is a second sum (x ∈ H) over sites in a hypercube on the original lattice surrounding
pi. In Fig. 4 we display the data for Cλ (Nv) vs. Nv computed for eigenmodes of the asqtad Dirac
operator in the full and center-projected configurations. We find that the values of Cλ (Nv) obtained
from eigenmodes in the full configurations are only about a factor of four smaller than the corre-
sponding values in the center-projected configurations, and the figures look much the same. The
most important feature, in our opinion, is the fact that the correlator increases steadily with increas-
ing number of the vortex plaquettes Nv. The eigenmode density seems to be significantly enhanced
at vortex sites with large Nv. Our results for eigenmodes of the overlap operator are similar, and
consistent with the results reported by Kovalenko et al. in Ref. [10].
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Figure 4: Vortex correlation Cλ (Nv) for asqtad staggered eigenmodes on a 204 lattice at βLW = 3.3, full
(left) and center-projected (right) configurations.

The correlations shown provide some degree of evidence that low-lying Dirac eigenmodes
concentrate preferentially at regions on the center vortex surface where there are self-intersections
or “writhing”-points, in agreement with the general picture advanced by Engelhardt and Reinhardt
[11]. It is then natural to ask whether there is any supporting evidence that the eigenmode density
is especially concentrated in point-like regions. To check this, we simply inspect sample plots of
ρλ (x) throughout the lattice volume. In Fig. 5 we display our data for the lowest eigenmode of the
asqtad Dirac operator, in some two-dimensional slices of the four-dimensional lattice volume taken
in the neighborhood of the point where ρλ (x) is largest. Each lattice, unprojected (left) and center-
projected (right), contains several sharp peaks of this kind; the concentration of eigenmode density
is in a point-like region, rather than being spread over a submanifold of higher dimensionality.
Figure 6 shows the same type of data for a zero mode of the overlap Dirac operator on 164 lattices.
For full configurations the eigenmode density again is concentrated in a point-like region. For the
overlap we have already noted that the spectrum evaluated in center-projected configurations is
unrelated to χSB, and indeed, instead of having a sharp peak, the eigenmode concentration in this
case extends over most of the lattice volume.
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Figure 5: Maximum density peak (center) of the first asqtad eigenmode on a 204-lattice at βLW = 3.3 with
upper (above) and lower (below) z-slices of the same t-slice. Eigenmodes are computed on (full (left) and
center-projected (right) lattices (notice different scales!).
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Figure 6: Maximum density peak (center) of the first overlap eigenmode on a 164-lattice at βLW = 3.3 with
upper (above) and lower (below) z-slices of the same t-slice. Eigenmodes are computed on (a) full lattices,
and (b) center-projected lattices (notice different scales!).
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4. Conclusions

We find that the thin vortices found in center projection give rise to a low-lying spectrum of
near-zero Dirac eigenmodes, provided that the chiral symmetry of the Dirac operator does not de-
pend on the smoothness of the lattice configuration. Thus, the vortex excitations of the vortex-only
lattice carry not only the information about confinement, but are also responsible for χSB via the
Banks-Casher relation. There are significant correlations between center vortices and the low-lying
modes of both the asqtad and overlap Dirac operators. These eigenmodes have their largest concen-
trations in point-like regions, rather than on submanifolds of higher dimensionality. Taken together,
correlations and dimensionality support the picture of a center vortex origin for topological charge,
and indicate that center vortices have a strong effect on the properties of low-lying eigenmodes of
the Dirac operator. A more detailed presentation is found in Ref. [14].
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