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We propose and support the possibility that the shape ofdgpral density 2—point function in
pure—glue QCD is crucially, and possibly entirely, detered by the space—time folding (geome-
try) of the double—sheet sign—coherent structure of R§fwhile the distribution of topological
density within individual sheets only determines the olferagnitude of the correlator at finite
physical distances. A specific manifestation of this, dised here, is that the shape of the cor-
relation function (encoding e.g. the masses of pseudasghlaballs) is reproduced upon the
replacement(x) — sgn(q(x)), i.e. by considering the double sheet of the same spacegime
ometry but with constant magnitude of topological dens@pmbined with previous results on
the fundamental topological structure, this suggestsdtwillective degree of freedom describ-
ing topological fluctuations of QCD vacuum can be viewed dsbaj space-fillindhomogeneous
double membrane. Selected possibilities for practicat wé¢his are discussed.
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1. The Context. Discovery of sign—coherent topological structure in equilibrium coméigans
of lattice—regularized QCD [1] and the subsequent demonstration thatrthés is of dynamical
origin [2] opened the door for systematic inquiry into the nature of configama dominating the
QCD path integral [3]. Conceptual innovations associated with thesdogenents have their
origin in the fact that the space—time structure is detected directly in equilibmsanebles and
using local composite operators which, among other things, has two impaortaltations. (1)
The information on the space—time order in QCD vacuum so obtained is fegerinfri assumptions
and subjective manipulationBgttom—Up approacf8]) thus putting the associated line of research
on a solid ground. (2) The space—time structure identified in this way incatgsofeatures at all
scales in the continuum limit. Consequently, the association of these featitheanaerlying
physics is not limited to usual “vacuum structure” low energy manifestatiomsdensates, string
tension) but extends to arbitrary property described by the thdongémental structudd1, 3].

In the general framework of [3] that we follow, it is emphasized that tledesdependence of
phenomena in QCD has to be reflected in the way we describe the structiyygaail configu-
rations (vacuum structure). Indeed, while the fundamental structures@omplete information
on the theory, it is implicitly understood that we are simultaneously considenngfiaite tower
of effective structuredabeled by momentum scale In the effective structure the fluctuations
up to length scale A\ are averaged out from the fundamental structure [3]. An individfral e
fective structure does not carry complete information about the theatythke association of its
space—time features with physics at the corresponding écaexpected to capture this physics
most efficiently. Loosely speaking, effective structures represenfutidamental order at varying
resolutions (scales of physics). Here we focus on the fundamentefstiin topological density.

The chief rationale of inquiries into the structure of typical QCD configuretiis the expec-
tation that such information can eventually be turned into an improved qualitatovguantitative
control over the theory. In case of fundamental topological structbeeunderlying order man-
ifests itself via existence of extended sign—coherent lower—dimensiegains (“sheets”) with
strong spatial correlation between the regions of opposite sign [1]. Mimeisely, the follow-
ing properties of the sign—coherent structure have been advoo@edwer dimensionality1],
meaning that it is impossible (in average sense) to embed a 4-d sign-cdbaieftinite physical
radius into the sign—coherent topological structure of QCD (see alsg)])4 (i) Inherent glob-
ality [1, 6], meaning that it is not possible to break the coherent structure iotdized pieces
without compromising the physics. In fact, there are only two global opgypsitearged sheets
closely following each other (“double—sheet’jiii) Space—filling naturg[1], meaning that even
though the structure is locally lower-dimensional, it nevertheless fills a mampasfraction of 4-d
space—time and is thus geometrically analogous to space—filling curvesadgitional references
related to fundamental topological structure, see [7].)

In this work, we propose a new geometric property of the double—straetusre that has direct
connection to QCD dynamics. In particular, we will show that the shape a2-tpeint function
is insensitive to inhomogeneities within the sign—coherent regions presgpidal configurations
of lattice—regularized ensembles. In other words, the presence ofirgumimogeneities is due to
an unphysical noise, not affecting correlations at finite physical disnRather, at the level of
fundamental structure, the dynamics appears to be encoded (posdibdyin the space—time
folding of homogeneous objects — in theometryof the double—sheet sign—coherent structure.



Dominance of Sign Geometry and the Homogeneity of the Fuent@iiTopological. . . Ivan Horvath

L=24 a=0.055 fm

0r . i
"
#
@ -1e-08 | # .
c
=}
[}
S  -2e-08 r 8
B #
S -3e-08 | .
o
S
T  -4e-08 | original ]
: geometric scaled
-5e-08 8
3 3.5 4 4.5 5 5.5 6
r [lattice units]
L=24 a=0.055 fm
19'07 T T T T T T T
S 1e08 | ++ :
=
o
i i
\J t
< i
1e-09 * ‘ E
original ‘
geometric scaled

3 35 4 45 5 55 6
r [lattice units]

Figure 1: The results for the originalG(r), and the geometric(r), correlators on 24lattice in pure—glue
lattice gauge theory (Iwasaki action)at 0.055 fm.G(r) was rescaled to coincide witB(r) atr = 3.

2. The Basic Observation.Original results put forward in this work are based on the outcome of
the following numerical experiment. Consider an ensemble of topologicalitgeronfigurations
corresponding to Wilson's lattice gauge theory at some cutoff. With evenfigurations =
{q(x), x € Z*} associate a new configurati@’_(%) defined via

% = {sqx) =sgn(q(x)), q(x) € €'} (1)

where sgfly) is the sign function. Thus, the configurati@h has field valuest1 and possesses
the same sign—coherent regions@s Now, consider the two—point functions of the original
G(x) = (q(x)q(0)) and of the associateB(x) = (sqx)s(0)) ensembles. Is there a definite re-
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lation betweerG(x) andG(x)? Note that we will frequently refer to barred entities as “geometric”
(i.e. geometric correlator, geometric ensemble) since the only informatiorficeptthe original
configuration is the space—time geometry of sign—coherent regions.

In Fig. 1 we show the result of such calculation orf 24itice at lattice spacing = 0.055
fm, using overlap—based definition of topological density. Since the bbveagnitudes of the two
correlators will evidently be very different, we have rescaled the gedernate such that gi| =
r = 3 they become equal, i.6(r) — G(r)G(3)/G(3). On the bottom plot, we show the results
on a logarithmic scale to better discern points at larger distances. As caeibggite clearly, the
original and the rescaled geometric 2—point functions appear identical vsithiistical errors. In
fact the agreement is better than statistical, indicating that, already at thisghysume, sign—
coherent geometry drives correlations at the level of individual goditions.

There are couple of points that we would like to note here. Firstly, the featrovered above
only holds in the “negative part” of the lattice correlator, i.e. in the regionre/itecan approximate
the behavior at finite physical distances, and not in the positive codeeth we will not propose
that lattice correlator&(x) and G(x) are equal up to rescaling. Rather, we will conjecture the
possibility that they define the same continuum limit at non—zero physical degarSecondly,
we emphasize that the currently available data [8] is supportive of theasoemith geometric
dominance being satisfied at all, rather than just at asymptotically large phgitances.

3. Specifics and Formalization.The numerical work on which we draw our conclusions is based
on pure—glue SU(3) lattice ensembles defined by the lwasaki action aniisg in Table 1. The
referenced lattice spacings are obtained from string tensja £450 MeV), and the physical
volume is kept fixed a¥, = 3 fm*. For definition of topological density operator we use overlap
Dirac matrix [9] based on Wilson—Dirac kernel with standardly definedupaters = 1 andp =
26/19. This setup was used in the original work [1] as well as in all the foll@\upthe Kentucky
group. Implementation of matrix—vector operation needed to evaluate topdldgitsityq(x) =
%trygD(x, X) is described in Ref. [10].

The correlators shown in Fig. 1 are coarse—grained over the distdhedf @ lattice spacing.
By this we mean that the samples for correlations with a given point weraradgated within
the spherical shells of thickness one half, centered at that point. Meoisply, let us define a
sequence of points and the associated sets (intervals), namely

{O fork=0 ~ {{O} fork=0
Nk = Jk =

'§‘+% fork=1,2,... [rk—3.rc+3) fork=12,... @

The coarse—grained correlation functiGfry, ¢’) on a given configuratio” is defined as

G(ry,¢) = <q(X)q(y)>%,\x—y\ejk 3)

Continuum limits of the (ensemble—averaged) standard and coarse-ejmelators are the
same, but the latter behaves more smoothly which is why we use it here. Allusions pre-
sented here are independent of this choice. In what follows we will tdei@ coarse—grained
correlator simply a$5(r) with the above discrete valuesoimplicitly understood.

The results shown in Fig. 1 correspond to the enseribleith the ensembles at coarser lattice
spacings behaving similarly. To quantify the trends and to formalize the pegpabservation, we
need a suitable measure. Equality of functions up to a multiplicative constaattisty expressed
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ensemble a[fm] \% Vo [fm?] configs
&1 0.110 12 3.0 142
& 0.082 16 3.0 50
&3 0.066 20 3.0 20
&y 0.055 24 3.0 10

Table 1: Ensembles of Iwasaki gauge configurations for topologiealsity calculations.

in terms of a normalized overlap (scalar product). For continuum realegdlunctionsfy, f, on
the interval[a, b] one has

— fi- f
O[fla f27a7 b] = |f::|l_-Hf2|

but in case of fast-decaying functions (such as the correlators esadidthere) a measure that is

more uniform over the domain and more stringent is provided by the “relatigdap”, namely

fa
) fl’

fifp= /:dx f(X) f2(X) )

O[fl, fz,a, b] =0 [1 a, b] (5)
Note that for functionsf (x¢) defined only on discrete set of argumeniglattice correlators) we
apply the above formulas as well via replacing these functions with theinpiseeonstant exten-
sionsf(x) = f(X«) for X € [Xx, Xik+1)-

Consider the lattice definition of the topological density 2—point function in thraain of
physical distance§ p1,rp2]. This requires studying the behavior Gfr,a) on the ever—growing
sliding lattice intervalrp1/a, rp2/a] close to the continuum limi — 0. If the original and the
geometric correlatorsd(r,a), G(r,a)) carry the same information about the shape of the physical
2-point function in the continuum limit, their relative overlap has to approatty.u The result
of such calculation for the interval [0.15 fm, 0.30 fm] is shown in Fig. 2. Tdemtand this, we
also included two ensembles coarser ti&anwith relevant lattice interval being entirely within
the positive core of the correlator. Fé% the upper limit of the interval involves a correlation
very close to zero as the correlator just becomes negative. This restifts observed dip and
large fluctuation of the relative overlap whose definition implicitly assumesfthiatnon—zero on
its domain (see Eq. (5)). For finer lattice spacings the relative overlajxlgapproaches unity.
Given these results, we propose to consider the possibility that the follmeimigcture holds.

Conjecture 1. Consider the pure-glue lattice gauge theory defined by the Iwasakiegaetgon on
the infinite lattice together with arbitrary nhon—perturbative procedure of §xime lattice spacing
a. If G(a) andG(a) are the original and the geometric 2—point functions of standard oveHaped
topological density then

lim 0[6(a), G(a), 22, 2] = 1 ®)

for arbitrary range of physical distancésy 1, o).

We emphasize that we do not mean to imply that the simplest sign redugton- sgnq(x))
considered here is the unique way to obtain the above—proposedlequ&aRather, what we wish
to convey is that there exists a family of computable configuration—-basedtreds { q(x) } —
{sqx) } with sq(x) € {—1,1} such that the shape equivalence holds.



Dominance of Sign Geometry and the Homogeneity of the Fuent@iiTopological. . . Ivan Horvath

Window: [0.15 fm, 0.30 fm]
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Figure 2: The relative overlag)[G(a), G(a),0.15/a,0.30/a]. See the discussion in the text for explanation.

4. The Uses and the DiscussiorDominance of sign—coherent geometry promises to have inter-
esting ramifications regardless of whether it eventually turns out to be @oxdamation (exact at
asymptotically large physical distances) or an exact statement specifi€drpgcture 1. In the
former case, it suggests to consider the “homogeneous approximatiamidarhental topological
structure [8]. In the latter case (strictly consistent with the data at this point)utdwepresent a
simple explicit link between short and long—distance physics — a connectibthéhfundamental
structure (in any composite field) has to encode in some way. There abpussible ways to
exploit such exact link, and we mention two examples here. (1) Validity ofig&ture 1 would
imply that for spectral calculations (glueball masses) it is sufficient to atalconfigurations of
signs of topological density rather than their precise values. For ovdrteged topological density,
this could lead to a speedup of calculations. (2) An alternative (not strigtlivalent) way of for-
mulating the observed trends is the followir@onsiderlim,_.., G(r,a)/G(r,a). This limit, (),
exists and the correlators @ a) andG(r,a) = G(r,a)G(a) are strictly equivalent from the point of
view of the continuum limitln particular, in the expected way of obtaining finite physical 2-point
function we have at arbitrary physical distarrge

_G(Z@) . G(Za . G(2a)d(a)
Gp(rp>zz!:1|£>n0 ;8 :LILnO ;8 ::Iﬂano : as

(7)

Applying this equation to short distancgs < 1/m; (glueball range) and taking into account that
é(r, a) has finite continuum limit at fixed, one can see that measurigg(a) offers a novel way
of testing the exact nature of asymptotic freedom. In Fig. 3 we show thé césavaluatingg?(a)

for ensemblessi—&, (fitting G(r,a) /G(r,a) to a constant), indicating that for our finest lattices
(2.3-3.6 GeV) the behavior is excellently describeddBga) 0 a. The perturbative prediction,
namely a logarithmic decrease gf(a) toward zero, hasn't yet set in. It will be quite interesting
to examine yet shorter scales to see where the perturbative descriptignetdominate, and to
look for possible geometric changes occurring in the fundamental steuatuthat happens. The

absence of such transition would imply a highly non—standard scenaritian@p(xp) 0 1/|Xp|”
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Figure 3: The scale dependenceq(a).See the discussion in the text for explanation.

at short distances with the true dimension of the topological density opéeitagD, = 3.5 rather
thanDq = 4. In that case the paramet@would be dimensionful (analogous to mass), asymptotic
freedom would be only approximate, and the strong CP problem woule ¢teasist.
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1it is tempting to interprety(@) as the density of the underlying fundamental structure whose featreefsilby
encoded in correlation functions at non—zero distances but distortesthdoy—range noise at zero physical distance.
While exact nature of such interpretation depends on the details of thelaytdrptween the noise and the structure,
it might be sufficiently robust so that the behaviga) 1 aP= could serve as a definition of the “analytic dimension”
(Da—dimensional local density). From Eq. (7) one could then deduce thgore between the true dimension of the
operator and the analytic dimension of the associated structure, nBgelip, = 4. Persistence of the trends shown in
Fig. 3 would then implypa = 1/2, while the validity of perturbation theory at short distances mean$that 0.



