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1. Motivation and introduction

The main phenomena in QCD at the finite temperature transition are deconfinement and chiral
symmetry restoration. There has always been the question whether there is a mechanism connec-
ting the two, in particular since in the quenched theory the corresponding phase transitions occur
at the same critical temperatures [1]. Here we define an observable that indeed links the two and
discuss numerical findings from quenched lattice configurations [2].

The Polyakov loop (with P denoting path ordering)

P(~x)≡P exp
(

i
∫

β

0
dx0 A0(x0,~x)

)
, β = 1/kBT , (1.1)

is the order parameter of confinement, being traceless in the confined phase and moving towards
the center of the gauge group, for SU(3) the three elements {1,exp(2πi/3),exp(4πi/3)}13, at
temperatures above Tc. This behavior can be understood by its relation to (exp(−βF) of) the free
energy F of a single heavy quark, which is infinite in the confining regime.

The spectral density of the Dirac operator at the origin, ρ(0), on the other hand, is the order pa-
rameter of chiral symmetry. It is related to the condensate by the famous Banks-Casher relation [3]
〈ψ̄ψ〉=−πρ(0) and vanishes above Tc.

How does confinement leave a trace in the Dirac spectrum? After all, the quarks should not
only know about chiral symmetry, but also that they are (de)confined. The answer will lie in the
dependence on temporal boundary conditions, as we will show now.

2. Idea, derivation and interpretation of the new observable

We use the lattice as a regulator. The (untraced) Polyakov loop

P(~x)≡
N0

∏
τ=1

U0(τ,~x) , (2.1)

is built from temporal links. For the lattice Dirac operator we use the staggered one [4]

D(x,y)≡ 1
2a ∑

µ

ηµ(x)
[
Uµ(x)δx+µ̂,y−h.c.

]
, ηµ(x) = (−1)x1+...+xµ−1 , (2.2)

which can be viewed as hopping by one link.
It is obvious and well-known that the k-th power of the Dirac operator at the same argument,

Dk(x,x), contains all products of links along closed loops of length k, starting and ending at x. The
Polyakov loop is among these loops for k = N0, but how to distinguish it from ‘trivially closed’
loops (like, e.g., the plaquette), that do not wind around the temporal direction?

The tool for this has been introduced by one of us in [5]. One needs phase boundary conditions
for the fermions

ψ(x0 +β ,~x) = eiϕ
ψ(x0,~x) , ϕ ∈ [0,2π] . (2.3)

The physical case of antiperiodic fermions is obtained for ϕ = π . These boundary conditions1

amount to an imaginary chemical potential. They can be easily implemented by replacing the
1Note that fermion bilinears like ψ†ψ are strictly periodic.
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temporal links U0 in some time slice by eiϕU0 and likewise U†
0 by e−iϕU†

0 . As a consequence, all
Polyakov loops get a factor eiϕ , inverse Polyakov loops a factor e−iϕ and those with higher winding
number get the corresponding power of that phase factor, while the trivial loops stay the same.

In this way, the Polyakov loop can be reconstructed from the Dirac spectrum by using at least
three boundary conditions, see [6]. This ‘thin’ Polyakov loop, however, has poor renormalization
and scaling properties and it turned out that in this approach it is UV dominated [6].

Influenced by the Jena group [7], we instead consider the propagator with some probe mass m.
The Dirac operator at a particular boundary condition ϕ is denoted by Dϕ and we use a geometric
series to represent the propagator,

tr
1

m+Dϕ

=
1
m

∞

∑
k=0

(−1)k

mk tr
[
(Dϕ)k] . (2.4)

This representation obviously contains all powers of the Dirac operator. Plugging in the definition
(2.2) and the factors of eiϕ , the propagator is given as a product of links along all closed loops,

tr
1

m+Dϕ

=
1
m ∑

loops l

sign(l)
(2am)|l|

e iϕq(l) tr c ∏
(x,µ)∈l

Uµ(x) , (2.5)

where |l| is the length of the loop and sign(l) comes from the staggered factor. The ordered product
of Uµ(x) is over all links (x,µ) in the loop.

Of importance in (2.5) is the phase factor, where q(l) counts how many times the loop winds
around the temporal direction. One can project onto a particular winding q by a Fourier transform
w.r.t. ϕ ,

1
2π

∫ 2π

0
dϕ e−iϕq . (2.6)

Specifying to a single winding, q = 1, like for the Polyakov loop, we arrive at [2]

Σ̃ ≡
∫ 2π

0

dϕ

2π
e−iϕ 1

V

〈
tr

1
m+Dϕ

〉
=

1
mV ∑

q(l)=1

sign(l)
(2am)|l|

〈
tr c ∏

(x,µ)∈l
Uµ(x)

〉
. (2.7)

This completes the derivation of our new observable Σ̃ , which we refer to as the ‘dual condensate’,
because it is obtained through a Fourier transform from the trace of the propagator. Indeed, in the
massless limit (after the infinite volume limit as usual) we obtain the chiral condensate

lim
m→0

lim
V→∞

Σ̃ =−
∫ 2π

0

dϕ

2π
e−iϕ lim

m→0
lim

V→∞
〈ψ̄ψ〉ϕ =

∫ 2π

0

dϕ

2
e−iϕ

ρ(0)ϕ , (2.8)

integrated with a phase factor over the boundary conditions. Making use of the Banks-Casher rela-
tion at every individual angle ϕ , we furthermore obtain the representation in terms of the eigenvalue
density ρ(0)ϕ .

The right hand side of (2.7) represents the ‘dressed Polyakov loop’, that is the set of all loops
which wind once around the temporal direction. In the infinite mass limit, detours become sup-
pressed and only the thin, straight Polyakov loop survives as it is the shortest possible loop in this
set.

We would like to stress that Eq. (2.7) is an exact relation and is valid for individual configura-
tions.
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Figure 1: The dressed Polyakov as an order parameter. Left: Expectation values for m = 100 MeV as a
function of T at various lattices, i.e., for different volumes and lattice spacings. Right: The corresponding
plot for the conventional Polyakov loop.

3. Numerical results and more interpretation

In the following we discuss various aspects of the relation (2.7). First of all, Fig. 1 shows that Σ̃

is indeed an order parameter. Keeping the mass m fixed, Σ̃ vanishes below the critical temperature
(which is about 280 MeV in the quenched case) and develops an expectation value for higher
temperatures. One finds that the results (when expressed in physical units) obtained for different
volumes and with different resolution essentially fall on a universal curve. This illustrates the good
renormalization properties of our observable, which are inherited from the renormalization of the
chiral condensate. The improved renormalization properties may also be understood as an effect
of the dressing which renders the new observable less UV dominated. For comparison we have
plotted the corresponding expectation values of the conventional thin Polyakov loop in the right
hand side panel of Fig. 1.

In a spectral representation, the Dirac operator Dϕ in Σ̃ can simply be replaced by a sum over
all its eigenvalues,

Σ̃ =
∫ 2π

0

dφ

2π
e−iφ 1

V

〈
∑

i

1

m+λ
(i)
φ

〉
, (3.1)

where the index ϕ on the eigenvalues λ
(i)
ϕ again refers to the boundary condition angle. This is

actually a suitable representation to numerically compute the dressed Polyakov loop (in contrast,
the right hand side of (2.7) contains an infinite sum over loops even on a finite lattice). On our
lattices we have calculated all eigenvalues and approximated the ϕ-integral by the trapezoidal rule
with 16 equidistant boundary conditions.

As the eigenvalues appear in the denominator, we expect the sum to be dominated by the IR
modes. As Fig. 2 shows, this is confirmed by the lattice data, if m is not too large.

How is a finite resp. vanishing order parameter Σ̃ built up by the eigenvalues? Fig. 3 shows
that they respond differently to the boundary conditions in the confined vs. deconfined phase. In
that figure we plot the expectation value of the propagator, i.e., the integrand of Σ̃ without the
Fourier factor. The eigenvalues are independent of the boundary condition in the confined phase,

4



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
6
2

Dual condensate, dressed Polyakov loops ... Falk Bruckmann

0.000

0.005

0.010

0.015

0.020

0.025

T < Tc

T > Tc

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

T < Tc

T > Tc

0 2000 4000
|λ|  [MeV]

0.0

0.5

1.0

1.5

T < Tc

T > Tc

0 2000 4000
|λ|  [MeV]

0.0

0.5

1.0

1.5

T < Tc

T > Tc

Individual contributions Individual contributions

Accumulated contributions Accumulated contributions

m = 100 MeV m = 1 GeV

m = 100 MeV m = 1 GeV

Figure 2: Individual and accumulated contributions to the spectral sum (3.1) at two different masses.

which leads to a vanishing order parameter Σ̃. In the deconfined phase, on the other hand, the
eigenvalues show a typical cosine-type of modulation. Together with the Fourier factor this yields
a nonvanishing Σ̃ (proportional to the amplitude of the modulation).

The chiral condensate has to behave essentially in the same way, as it is the integrand in the
massless limit. Although the chiral condensate is finite in the confined phase, it is independent of
the boundary condition ϕ and hence results in a vanishing dual condensate. This feature reflects
the conserved center symmetry: the trace of the Polyakov loop is zero and does not prefer any
direction in the space of boundary conditions.
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Figure 3: The integrand 〈∑i(m + λ
(i)
ϕ )−1〉/V as a function of the boundary condition ϕ for two values of

am and two temperatures, for configurations with real Polyakov loop. For non-real Polyakov loop the plot is
shifted by ±2π/3 restoring the 2π/3-symmetry well-known from imaginary chemical potential.
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The situation in the deconfined phase might be more confusing at first glance as the spectrum
has a gap there: how can the vanishing chiral condensate then generate a finite order parameter Σ̃?
The answer is again the dependence on the boundary conditions. For boundary conditions in line
with the original Polyakov loop, the chiral condensate persists above the critical temperature Tc.
This has been demonstrated on the lattice first in [8] and was recently confirmed for gauge group
SU(2) in [9] (see also [10] for a random matrix study). This mechanism ensures a finite Σ̃ and
should actually be at work for all T > Tc.

In the quenched case the conventional Polyakov loop is the order parameter for center symme-
try. Under center transformations the dressed Polyakov loop behaves in the same way. Therefore, Σ̃

is an order parameter for center symmetry, which is underneath our numerical findings. In Ref. [11]
it has been proved that all functions of Dϕ integrated with the Fourier factor are center symmetry
order parameters and, what is more, have a well-defined continuum limit.

With dynamical quarks, the center symmetry is broken by the fermion determinant. One might
then expect a ϕ-dependence and a nonvanishing Σ̃ also in the low-temperature phase (and neither
the thin nor the dressed Polyakov loop are order parameters in the strict sense).

When evaluated in the canonical ensemble with quark number Q = 1 (see, e.g., [12]2), our
observable has an interesting interpretation. It is obtained as the derivative of the free energy in
the Q = 1 sector with respect to the mass parameter m. In the confining phase this free energy is
infinite and thus independent of m, as suggested by our quenched analysis. Above the transition
the free energy becomes finite and m dependent, consistent with the quenched data.

4. Summary and outlook

We have shown that the response of Dirac spectra to different temporal boundary conditions
contains information about confinement. We have defined the dressed Polyakov loop Σ̃ as a novel
deconfinement order parameter, that interpolates between the dual chiral condensate and the con-
ventional thin Polyakov loop in the different extremes of the mass parameter m. Among other
properties we have shown that this quantity is IR dominated and transforms non-trivially under
center symmetry transformations (therefore, we expect the findings to be independent of the choice
of the lattice Dirac operator). In the same spirit, many center sensitive functions of the Dirac
operator can be defined, also in the continuum.

In full QCD (or with the recently studied 4-fermion interactions [13]), the critical temperatures
of deconfinement and chiral restoration could be different. It would be interesting to see what
happens then in our formalism. As a speculative scenario, a deconfining and chirally broken phase
would have both the dual and the antiperiodic chiral condensate finite. This is easily possible, e.g.
if the condensate has a sine-behavior with the boundary condition. Even a phase that is confining
and chirally symmetric could be realized, for instance by a vanishing condensate for all boundary
conditions.

2We thank Philippe de Forcrand and Michael Ilgenfritz for discussions on this point.

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
6
2

Dual condensate, dressed Polyakov loops ... Falk Bruckmann

References

[1] J. Kogut, M. Stone, H. W. Wyld, W. R. Gibbs, J. Shigemitsu, S. H. Shenker and D. K. Sinclair,
Deconfinement and chiral symmetry restoration at finite temperature in SU(2) and SU(3) gauge
theories, Phys. Rev. Lett. 50 (1983) 393.

[2] E. Bilgici, F. Bruckmann, C. Gattringer and C. Hagen, Dual quark condensate and dressed Polyakov
loops, Phys. Rev. D77 (2008) 094007 [arxiv: 0801.4051].

[3] T. Banks and A. Casher, Chiral symmetry breaking in confining theories, Nucl. Phys. B169 (1980)
103.

[4] J. B. Kogut and L. Susskind, Hamiltonian Formulation of Wilson’s Lattice Gauge Theories, Phys. Rev.
D11 (1975) 395.

[5] C. Gattringer, Linking confinement to spectral properties of the Dirac operator, Phys. Rev. Lett. 97
(2006) 032003 [hep-lat/0605018].

[6] F. Bruckmann, C. Gattringer and C. Hagen, Complete spectra of the Dirac operator and their relation
to confinement, Phys. Lett. B647 (2007) 56–61 [hep-lat/0612020].

[7] F. Synatschke, A. Wipf and C. Wozar, Spectral sums of the Dirac-Wilson operator and their relation
to the Polyakov loop, Phys. Rev. D75 (2007) 114003 [hep-lat/0703018].

[8] C. Gattringer and S. Schaefer, New findings for topological excitations in SU(3) lattice gauge theory,
Nucl. Phys. B654 (2003) 30–60 [hep-lat/0212029].

[9] V. G. Bornyakov et. al., The topological structure of SU(2) gluodynamics at T > 0 : an analysis using
the Symanzik action and Neuberger overlap fermions, arxiv: 0807.1980, T. G. Kovacs, Gapless
Dirac spectrum at high temperature, talk at this conference.

[10] M. A. Stephanov, Chiral symmetry at finite T, the phase of the Polyakov loop and the spectrum of the
Dirac operator, Phys. Lett. B375 (1996) 249–254 [hep-lat/9601001].

[11] F. Synatschke, A. Wipf and K. Langfeld, Relation between chiral symmetry breaking and confinement
in YM-theories, Phys. Rev. D77 (2008) 114018 [arxiv: 0803.0271].

[12] S. Kratochvila and P. de Forcrand, QCD at small baryon number, Nucl. Phys. Proc. Suppl. 140 (2005)
514–516 [hep-lat/0409072], A. Alexandru, M. Faber, I. Horvath and K.-F. Liu, Lattice QCD at
finite density via a new canonical approach, Phys. Rev. D72 (2005) 114513 [hep-lat/0507020],
S. Kratochvila and P. de Forcrand, QCD at zero baryon density and the Polyakov loop paradox, Phys.
Rev. D73 (2006) 114512 [hep-lat/0602005], P. de Forcrand and S. Kratochvila, Finite density
QCD with a canonical approach, Nucl. Phys. Proc. Suppl. 153 (2006) 62–67 [hep-lat/0602024],
A. Li, A. Alexandru and K.-F. Liu, New results using the canonical approach to finite density QCD,
PoS LAT2007 (2007) 203 [arxiv: 0711.2692], J. Danzer and C. Gattringer, Winding expansion
techniques for lattice QCD with chemical potential, arxiv: 0809.2736.

[13] D. K. Sinclair, Separating the scales of confinement and chiral-symmetry breaking in lattice QCD
with fundamental quarks, arxiv: 0805.4627.

7

http://arXiv.org/abs/0801.4051
http://arXiv.org/abs/hep-lat/0605018
http://arXiv.org/abs/hep-lat/0612020
http://arXiv.org/abs/hep-lat/0703018
http://arXiv.org/abs/hep-lat/0212029
http://arXiv.org/abs/0807.1980
http://arXiv.org/abs/hep-lat/9601001
http://arXiv.org/abs/0803.0271
http://arXiv.org/abs/hep-lat/0409072
http://arXiv.org/abs/hep-lat/0507020
http://arXiv.org/abs/hep-lat/0602005
http://arXiv.org/abs/hep-lat/0602024
http://arXiv.org/abs/0711.2692
http://arXiv.org/abs/0809.2736
http://arXiv.org/abs/0805.4627

