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The random percolation model can be viewed as the dual ofl@lefhed confining gauge theory;
since this theory, having no Monte Carlo dynamics at alljrigote to simulate, it is possible to
study the properties of the flux tube with very high precisiote show it can be described by
the effective string picture. Our results are lattice ragshtion independent, therefore they are
well defined also in the continuum limit, and, for the first &énm a gauge theory, it has been
possible to determine the next-to-leading quantum cdaresthroughout the computation of the
T6 coefficient of the Taylor expansion of(T). Furthermore, this coefficient results to be related
to the universal ratidc/+/0o.
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1. Introduction: the effective string theory

The assumption behind the effective string theory is that the color flux ctingea pair of
quark is squeezed inside a thin flux tube; as a consequence, the apmpiéntial rises linearly.
According to this picture the flux tube should behave as a free vibrating strin

Unfortunately, the action of this effective theory is unknown; the simpkestmpion is that it
is described by the Nambu-Goto action, which is proportional to the stringisloret area.

We try to summarize the outcome of many studies on this argument discussingreqesips
of the first terms of the low temperature expansion of the string tension @htefimog is the zero-
temperature string tension):

o(T) = 00—(d—2)7—6TT2+ chnT”. (1.1)

The second term, the analogue of the Lischer term at finite temperature wésccalculated in
Ref. [1], does not depend on the gauge group and is expected todgeimdent of the interaction
terms of the effective theory. Thanks to a certain open-closed striflgydiiavas shown that for
any dimensionalitgs = 0 and, in three dimensions, is universal [[2]; hence, it coincides with the
value calculated in the NG mod¢] [3, 4I:

c4:—(d—2)72";. (1.2)
Using a different approach to the effective string theory, REf. [8 above results were confirmed
for all values ofd.

In this paper we will evaluate the coefficiemtsup ton = 6, in a simple, but not trivial, model:
the gauge theory dual to thel percolation model. All of the date agree with the universal values
of ¢, andc, and lead tazs = 0 andcg = 12/ (Cog), whereC ~ 300.

We decided to focus our attention to the behaviour of the Polyakov-Pohaeelation func-
tion (P(0)P*(r)) at finite temperaturd = % in (2+1)-dimensionsy is the distance between the
Polyakov loops/ is the time extent of the lattice areds the lattice spacing.

The functional form of the correlator has been calculated at the ndgatbrg order (NLO)
in Ref. [4]:

—He-ort d— 2)12([2E4(T) — E2 1
(P(O)P*(r))nLo = (Ia’](T)dZ <1_( ) 1&524(;2 5(1)] +O<r5>> ’ (1.3)

wheren is the Dedekind functiorE, andE; the two Eisenstein functions and=i¢/(2r).
Using Eq. [1]3) one can find, for asymptotically large
"

_~ It 2_7"'2 4_ . T, T _4 5
oT)=0 6T 725T = 0p 6T 7200T +0O(T>). (1.4)

Note here the difference betweérandoy: & = g+ O(T>).
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2. Thegaugetheory dual to the percolation model

In this paper we study a particular gauge theory, first introduced in[Rethat is dual to the
random percolation model. A more complete account will be presented irf[fRef.

It is known in three dimensions it is possible to study a well defiﬁg@augé theory dual
to the Q-state Potts model through the Kramers-Wannier dudljty [8]. Thanks to thefe can
map some gauge invariant observables, such as Wilson loops and Rob@kelators, into the
corresponding quantities of the spin model, it is numerically convenient tedhspe properties of
the dual theory instead of those of the gauge model. The ingredient whithrisundamental in
our approach is the Fortuin-Kasteleyn reformulatign [9] of @etate Potts model, by which it is
possible to determine gauge observables in a very efficient way. Thieaagp that foiQ > 1 is
only a powerful numerical method, can be applied to the random percolatoiel whose gauge
formulation is not known: it is the gauge theory in fQe— 1 limit.

The key ingredient is the method used to calculate the Wilson loops in this setugefine a
procedure to determine its value studying some topological properties ofithenddel.

The connected components of the graph, formed by active links, avenka® clustersyV, is
the value of the Wilson loop associated with a loop with contouwe setwW, = 1 if there is no
cluster topologically linked to the contoyy otherwise we sél, = 0. The same linking properties
are used to determine the Polyakov-Polyakov loop correld®(@®)P*(r)): at finite temperature
the contoury is ar x £ rectangle, with two sides identified.

Another interesting study of this model, related to the monopole mass, canrizeifolL§)].

3. Simulations

The idea behind this work is not only to verify whether one can observerdsence of shape
effect due to rough fluctuations of the string, in agreement with the waligr predictions of the
effective string picture (as a matter of fact we have discussed this pdRefifL]]); we also would
verify that our results are not regularisation dependent. In othersyevd would discuss if our
results describe a “real” phenomenon and not a lattice/model artifact.

We therefore study five different systems (see T

_ _ " Lattice p lc=1/aT;
ple iY) c.haracter.lzed by dlffereht ocgupancy probabji= SCbond | 0272380 6
|ty p, different kind of percolgtlon §S|te or bo.nd) ahci SChbond | 0.268459 4
different geometry of the Iattllce (sllmple cubic lattice SChbond | 0.265615 8
e O | SCote | ozisoont| 7
' ' | BCC bond| 0.21113018 3

the inverse of the temperature, was chosen such that
0.3T. < T < 0.8T.. The value of the spatial size was  Table1: The five systems simulated.

L = 128 which was in most cases sufficient to account

for the infinite volume limit. Just in the cage = 8, simulated at = 10 and¢ = 11, we found a
sizable dependence on the lattice dizen this case we performed further simulations on larger
lattices in order to extract the correct valuedtising the scaling relationv(= 4/3 is the termal
exponent of & percolation model):

5'1/|_ = 5'—CL_1/V . (31)

1SQ is the symmetric group.
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For each system, we measurg®(0)P*(r) ) by varying the distance between the two Polyakov
lines fromr = 8 tor = 50; to reach an acceptable statistics, we collected data frérodtfligura-
tions for each value gb and/.

The algorithm used, described in detail in Rff. [6], is basically aimed atrditimg the linking
properties of clusters with the Polyakov-Polyakov contour.

4. Numerical results

Our numerical results are compared with the expected behaviour of thakBwhPolyakov
correlation function given in Eq[(3.3). Being an expression valid in theaiefl limit we use a
sliding windowanalysis to determine the correct values of the fitted parandetee fitted the data
in the rangemin < r < rmax by progressively discarding the short distance data, vamifgbut
fixing the value of nmax= 50a (see Fig[]L). In all five sistems considered a large plateau appears for
all values of¢ not too close td., showing the stability of the fits and so the suitability of the string
picture to describe our data. It is important to note that, as[Fig. 1 shows,ahedifferent values
of the string tension for different values 6fi.e. of T. In other words, the value @ is not yet the
string tension at zero-temperatuwrg the formula Eq.[(1]3) is not the exact formula because it only
takes into account the temperature dependence up to theTtdsee Eq.[(1]4)). We studied the
dependence dF on ¢ and we verified, in all cases, that faf = 1/¢ low enough the correction is
proportional toT ® (see Fig[R). Therefore, we used the valuéidb determine the value af(T)
by Eq. (1.4), i.e. we reconstructed the correct dependence of thg rision on the temperature;
then we used these data to perform a new fit to determine the first modeledgppeerm by means
of the Ansatz:

e e

m_o 4 6 8
T)=0g— =T ———T"+—=T°4+0(T°) . 4.1
a(T) = 6 720 Ca? (™) (4.1)

Thereby, we can identify stable values both for the zero-temperaturg $tmsionop and the
coefficientC, see Tablg]2.

Lattice | /.= 1/aT; C aay Te/ /G0
SC bond 6 291(7) | 0.012612(6)| 1.4841(4)
SC bond 7 281(5) | 0.009234(5)| 1.4866(5)
SC bond 8 297(5) | 0.007059(5)| 1.4878(5)
SC site 7 307(9) | 0.009399(8)| 1.4735(6)
BCC bond 3 295(14)| 0.0474(4) | 1.531(7)

Table 2: The parameter€ anda?ay in the fit (4.1) for the numerical experiments listed in Tflléhe last
column is the universal rati®://0p as obtained by combining the second and the fourth columns.

Note that the five values d coincide up to the statistical errors. The valueTgf,/0o,
obtained by combining the precise determinatioratdy with the deconfined temperaufg, is
an important universal quantity which characterizes the particular génegey; the small varia-
tions appearing in Tab[é 2 are presumably due to the corrections-to-sttainge have neglected.
Nonetheless, we can assert the value closer to the continuum limit is thatezbit@ithe simulation
with bond percolation and, = 8 where statistical and systematic error were better under control;
therefore we will use, in the followind/./0p = 1.48785).
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If we plot the adimensional ratio(T)/T2 versus the reduced temperatare (T — Tc)/Tc
it turns out that all data li@lmoston a unique curve, see Figuie 3; this non-universal behaviour
is related to the fact the five different systems are characterized byetifféuniversal” value of
the quantityT./,/0p and the adimensional variables used are very sensitive to it. As a matter of
fact, if we impose the value af(T)/TZ is the same for all systems, i.e. we determine for each
system a newl value by whichT./,/0g = 1.48785), all data fall on a unique universal curve as
Figure[# shows. This is the most important result of this work becauseitsshar results are
independent of the regularisation used, therefore we are studinglageaige theory well defined
in the continuum limit.

It is interesting to note that the values©fand ofT./,/0p can be determined with only two
pieces of information: (1) the data are all in the scaling region and (2) timy a linear behaviour
in the range—0.55 <t < —0.225. This means we can impose the two following equations to

coincide in the above rang8 & % andx = %):
olL) m, TP ™ 4
T2 7% 72X teg (4.2)
ol) _
7 A(x—1). (4.3)

Immediately, without using numerical data, it is possible to deterr@ine 290 andT./,/0p ~
1.4884; these two values are remarkably close to those obtained using theicalirdata, see
Table[2. In Figur¢]4 we plot Ed. (4.2) (dashed line) and Eq] (4.3) (ddittejlusing those values;
the numerical data lie on the two curves in the scaling region. This is an impaotiaetvation
because it means the two quant®yandT././0p are constrained to each other in that region.

5. Conclusions

In this paper we have studied, by numerical simulation, the gauge thedrypdii@ percolation
model; we can conclude it is possible to describe the long distance dynantiais dieory by
means of an effective string picture. Our numerical experiment demenshat the quantities
which characterize the effective string theory do not depend on thefispeegularisation used.
Moreover, we determined with high precision the valuesdT)/T2 and, for the first time in a
gauge theory, we have determined the value oftReoefficientC of the string tensioro(T).
Furthermore, it was possible to show that the universal r&tiq/gg and the coefficienC are
bound together in the scaling region.
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Figure 1: The fitted value of the string tensiah as a function of the minimal distancgi, of the set of
Polyakov-Polyakov correlators considered in the fit; cdd®ood percolation witt; = 8.
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Figure 2: Plot of the fitting parameted as a function off ® in numerical experiments with bond percolation
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Figure 3: Plot of the scaling variable (T) /T2 versus the reduced temperature.
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Figure 4: Plot of the scaling variable (T)/TZ versus the reduced temperature when we impose the value

of T¢//0o = 1.4878. Dashed line is the plot of Eq. (4.2), dotted line is tfdEq. (4.3).



