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1. Introduction
There is much interest in precision lattice calculations of K → ππ decays because they can

yield information on the origin of the ∆I = 1
2 rule and CP violation in the Standard Model [1, 2].

While many quenched calculations of these decays have been performed (for example [2, 3, 4, 5,
6]), a full dynamical calculation has yet to be done. Steps have been made here toward a complete
calculation of this type. In order to obtain reasonable precision we use 2+1 flavors of domain wall
fermions (DWF) on a 243 ×64 or even 323 ×64, Ls = 16 lattice.

In physical K → ππ decays, the kinematics are such that the pions have non-zero momentum
in the CM frame. Giving the pions momentum on the lattice can introduce a lot of noise due to
the fact that one is projecting onto an excited state of the two pion system rather than the ground
state. For this reason only pions with (nearly) zero momentum are simulated in this paper, and the
introduction of significant pion momentum is left to future work.

2. Four Quark Operators and the Effective Hamiltonian
The weak interactions and the effects of the heavier quarks can be included in the lattice QCD

simulation by evaluating matrix elements of an effective Hamiltonian [7, 8]. In particular we use
the conventions of [2]

H∆S=1 =
GF√

2
VudV ∗

us

10

∑
i=1

[zi(µ)+ τyi(µ)]Qi (2.1)

where Vkl are CKM matrix elements, zi and yi are Wilson coefficients, τ =−λt/λu with λ j ≡VjdV ∗
js,

and {Qi, i = 1, ...,10} are four quark operators. Therefore we are interested in calculating matrix
elements of the four quark operators Qi between a K and a ππ state. These operators can be split
into ∆I = 3/2 and ∆I = 1/2 parts, where ∆I is the change in isospin induced by the operator. They
can then be further classified by how they transform under the chiral SU(3)L ×SU(3)R symmetry,
and the representations (27,1), (8,8), and (8,1) are all found among various of the operators [1, 2].

3. Extraction of the Matrix Element on the Lattice
We calculate only matrix elements of the operator Q∆I=3/2

(27,1) , the single operator that transforms
as (27,1) under SU(3)L × SU(3)R and ∆I = 3/2 under isospin. To simplify matters we calculate
the unphysical matrix element 〈π+π+|Q′∆I=3/2

(27,1) |K+〉 which can be related to the physical matrix
element 〈π+π0|Q∆I=3/2

(27,1) |K+〉 by the Wigner Eckhart theorem [3] if Q′∆I=3/2
(27,1) is given by

Q′∆I=3/2
(27,1) = s̄γµ(1− γ5)dūγ µ(1− γ5)d (3.1)

To extract the matrix element of this operator we calculate the following correlation functions

CK(t, tK)= 〈OK(t)O†
K(tK)〉, Cππ (t, tπ )= 〈Oππ(t)O†

ππ (tπ)〉, CO(tπ , t, tK)= 〈Oππ (tπ)OW (t)O†
K(tK)〉
(3.2)

where tK < t < tπ and where the interpolating operators are given by

O†
K(t) = ∑

x,y
ū(x, t)γ5s(y, t), Oππ (t) = ∑

x,y,x′ ,y′
d̄(x, t)γ5u(y, t)d̄(x′, t)γ5u(y′, t) (3.3)

OW (t) = ∑
x

s̄(x, t)γµ (1− γ5)d(x, t)ū(x, t)γ µ (1− γ5)d(x, t) (3.4)
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Note that the interpolating operators in (3.3) are such that the correlators use wall sources and wall
sinks, and project onto the zero momentum kaon and nearly zero momentum two pion states.

For tK � t � tπ we expect the following quotient of correlators to show a plateau in t:

CO(tπ , t, tK)

CK(t, tK)Cππ (t, tπ )
∼ M

Z∗
ππ ZK

, tK � t � tπ (3.5)

Here M is the matrix element we wish to extract. ZK and Zππ appear in the normalization factors
for the kaon and two pion correlators respectively, and it is only possible to extract |M |.

4. Details of the Lattice Calculation
Calculations were carried out on the RBC/UKQCD 323 ×64, Ls = 16 2+1 flavor domain wall

fermion lattices. The inverse lattice spacing for these lattices is 2.42(4) GeV [9], corresponding to
a physical volume of (2.6 fm)3. The sea strange quark mass is always 0.03 in lattice units, and for
the sea light quark mass (henceforth denoted by just msea) there is an ensemble with msea = 0.004
and an ensemble with msea = 0.008, both with 129 configurations. For each ensemble, inversions
are performed with the following valence masses: mval =0.002, 0.004, 0.006, 0.008, 0.025, and
0.030. We calculate matrix elements for all possible valence mass combinations such that ms ≥ ml
where ms is the valence strange quark mass and ml is the valence light quark mass.

We add and subtract propagators with periodic and antiperiodic boundary condtions in order
to double the effective time length and suppress around the world contributions. The resultant
periodic plus antiperiodic (P+A) propagator has a source at t=0 and the resultant periodic minus
antiperiodic (P-A) propagator effectively has a source at t=64. These provide the left and right
walls for the kaon at tK = 0 and the two pions at tπ = 64 respectively, and the time t at which the
operator is located is varied. Twelve wall source propagators using a unit source distributed over a
single time slice, each with a specific spin and color (fixed in Coulomb gauge), are computed on
each configuration and used to evaluate the correlation functions in (3.2).

5. Results
Effective mass plots of the kaon and two pion correlators are shown in Figure 1, for msea =

0.004, ms = 0.03, and ml = 0.004. When the K → ππ correlator is divided by the kaon and two
pion correlators as in (3.5), we find that the quotient shows a plateau as expected. The quotient and
a fit to the plateau are shown for msea = 0.004, ms = 0.03, and ml = 0.004 in Figure 2.

From the lattice matrix element |M | we wish to find the physical quantity |A2|, as defined in
[2], which can be compared to experiment. |M | must be multiplied by the following factors in
order to obtain |A2|

1. The Wilson coefficient plus factors that appear in the effective Hamiltonian (2.1) multiplying
the operator. Wilson coefficients evaluated at µ = 2 GeV are interpolated from [10].

2. Numerical factors due to the Wigner Eckhart transformation that relates K+ → π+π0 to
K+ → π+π+.

3. A lattice to MS renormalization factor ZMS
BK

(µ) for the operator. It is evaluated at the same
scale µ as the Wilson coefficient and is obtained from [11].
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Figure 1: Effective mass plots and fitted values of the mass/energy for the kaon and two pion correlators
with msea = 0.004, ms = 0.03, and ml = 0.004. Left: Kaon correlator. Right: Two pion correlator.
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Figure 2: Plot of the K → ππ correlator divided by the kaon and two pion correlators for msea = 0.004,
ms = 0.03, and ml = 0.004. The fit to the plateau is shown.

4. A factor proportional to
√

mKE2
ππ L3, where L = 32a is the spatial extent of the lattice. This

performs a naive transformation between finite and infinite volume normalization, ignoring
the effects of ππ scattering that have been analyzed in [12]. We hope to include the more
accurate correction of [12] in future work.

Technically the contribution of the other two ∆I = 3/2 four quark operators to |A2| should also
be included. However, these have been found to be much smaller than the contribution of the (27,1)
operator [3], so we neglect them.

A table of results for all of the different mass combinations can be found in Table 1. The
data for |A2| is new and was not presented at the time of the talk. Note that none of the mass
combinations correspond to a process in which energy is conserved, although msea = 0.004, ms =

0.03, ml = 0.004 comes close. Notice also that changing msea doesn’t have much of an effect. This
insensitivity to the sea quark mass justifies doing a linear interpolation/extrapolation to the unitary
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point msea = ml with respect to the sea quark mass for a given ml . The sea strange quark mass,
however, is always fixed at 0.03, so we are stuck with a non-unitary strange quark if ms 6= 0.03.

Since some of the mass combinations come close to conserving energy, it is not unreasonable
to attempt to interpolate/extrapolate to energy conserving kinematics. Specifically, holding the pion
mass constant we plot |A2| as a function of m2

K −E2
ππ (mK is varied, Eππ is constant), fit to a straight

line, and extrapolate or interpolate to m2
K −E2

ππ = 0. We do this for four different pion masses, and
the plot plus extrapolation for mπ = 308 MeV is shown in Figure 3 on the left.

We now have values of |A2| for several pion masses extrapolated to kinematics which are
energy conserving, as tabulated in Table 2. In Figure 3 on the right, we add the preliminary data in
this work to the plot of |A2| ≈ Re(A2) vs. m2

π found in [6].
In Figure 3 we see that the data in the present work does not appear to agree with that in [6].

This may be due to the fact that dynamical quarks are used in the present work whereas [6] was
done in the quenched approximation. However, it could easily be due to the different methods used
to set the lattice spacing (the ρ mass for the lattices used in [6] vs. the Ω mass for the lattices used
in this work, see [9]), especially considering that |A2| is a dimensioned quantity that is proportional
to a−3 making it extremely sensitive to errors in a. Furthermore, the lattice spacings in the two
works are quite different (a−1 = 2.42 GeV in this work compared to a−1 = 1.31 GeV in [6]) so that
finite lattice spacing effects could come into play. It has been checked that the same conventions
for the normalization of |A2| were used in this work and in [6].
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Figure 3: Left: Plot of the physical quantity |A2| vs. m2
K −E2

ππ for the fixed pion mass mπ = 308 MeV, and
fixed Eππ = 626 MeV. This plot is fit with a straight line, and extrapolated to the energy conserving point
m2

K −E2
ππ = 0 (red circle). Right: Plot of |A2| vs. m2

π . The preliminary data points of this work (red, dashed
line) are shown alongside those from [6] (black, solid line). For the two largest pion masses in the present
work the extrapolations to energy conserving kinematics are very large. Thus the error bars for these masses
are the systematic rather than statistical error, which is estimated as the difference between the extrapolated
value obtained from a linear and from a quadratic fit.

6. Conclusion
We have calculated the contribution of the operator Q∆I=3/2

(27,1) to |A2| in ∆I = 3/2 K → ππ
decays with 0 momentum pions on a 323 × 64, Ls = 16 2+1 flavor DWF lattice. We did a linear
extrapolation to a unitary light sea quark mass from the two light sea quark masses of 0.004 and
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Table 1: Kaon masses, two pion energies, matrix element values, and |A2| results for different valence mass
combinations. Each line of data for msea = 0.004 has the corresponding line of data for msea = 0.008 below
it so that the insensitivity of the data to sea quark mass can be seen.

ml ms msea mK (MeV) Eππ (MeV) |M | |A2| (10−8 GeV)
0.002 0.002 0.004 237.1(9) 485(2) 0.001166(27) 1.510(36)
0.002 0.002 0.008 241.4(9) 493(3) 0.001148(29) 1.521(41)
0.002 0.004 0.004 274.9(9) 485(2) 0.001189(28) 1.657(40)
0.002 0.004 0.008 279.0(8) 493(3) 0.001159(28) 1.651(42)
0.002 0.006 0.004 308.1(9) 485(2) 0.001213(30) 1.790(45)
0.002 0.006 0.008 312.1(8) 493(3) 0.001178(28) 1.774(45)
0.002 0.008 0.004 338.1(9) 485(2) 0.001236(31) 1.910(50)
0.002 0.008 0.008 341.9(8) 493(3) 0.001200(29) 1.893(48)
0.002 0.025 0.004 528(1) 485(2) 0.001399(50) 2.701(97)
0.002 0.025 0.008 531(1) 493(3) 0.001409(47) 2.770(94)
0.002 0.03 0.004 572(1) 485(2) 0.001438(55) 2.89(11)
0.002 0.03 0.008 576(1) 493(3) 0.001472(55) 3.01(12)
0.004 0.004 0.004 307.7(9) 626(2) 0.001459(29) 2.773(56)
0.004 0.004 0.008 311.7(8) 632(2) 0.001408(26) 2.721(51)
0.004 0.006 0.004 337.5(8) 626(2) 0.001466(30) 2.918(60)
0.004 0.006 0.008 341.3(8) 632(2) 0.001418(25) 2.869(53)
0.004 0.008 0.004 364.8(8) 626(2) 0.001477(30) 3.056(64)
0.004 0.008 0.008 368.6(8) 632(2) 0.001433(26) 3.012(55)
0.004 0.025 0.004 545(1) 626(2) 0.001609(41) 4.07(10)
0.004 0.025 0.008 549.0(9) 632(2) 0.001576(33) 4.044(87)
0.004 0.03 0.004 588(1) 626(2) 0.001644(44) 4.32(12)
0.004 0.03 0.008 592(1) 632(2) 0.001619(37) 4.31(10)
0.006 0.006 0.004 364.6(8) 739(2) 0.001668(31) 4.076(76)
0.006 0.006 0.008 368.4(7) 746(2) 0.001623(26) 4.023(64)
0.006 0.008 0.004 389.9(8) 739(2) 0.001673(31) 4.228(79)
0.006 0.008 0.008 393.7(7) 746(2) 0.001633(26) 4.182(66)
0.006 0.025 0.004 562.5(9) 739(2) 0.001767(37) 5.37(11)
0.006 0.025 0.008 566.1(8) 746(2) 0.001746(31) 5.362(95)
0.006 0.03 0.004 604.6(9) 739(2) 0.001798(39) 5.66(12)
0.006 0.03 0.008 608.3(9) 746(2) 0.001780(33) 5.67(11)
0.008 0.008 0.004 413.6(8) 837(2) 0.001863(32) 5.492(95)
0.008 0.008 0.008 417.4(7) 843(2) 0.001815(26) 5.414(80)
0.008 0.025 0.004 579.4(8) 837(2) 0.001937(35) 6.76(13)
0.008 0.025 0.008 582.9(8) 843(2) 0.001900(30) 6.70(11)
0.008 0.03 0.004 620.5(8) 837(2) 0.001964(37) 7.09(14)
0.008 0.03 0.008 624.0(8) 843(2) 0.001928(32) 7.03(12)
0.025 0.025 0.004 710.2(6) 1427(1) 0.003172(48) 20.89(32)
0.025 0.025 0.008 712.6(7) 1431(2) 0.003101(42) 20.51(28)
0.025 0.03 0.004 745.1(6) 1427(1) 0.003180(48) 21.45(33)
0.025 0.03 0.008 747.3(7) 1431(2) 0.003115(43) 21.09(29)
0.03 0.03 0.004 778.7(6) 1564(1) 0.003509(53) 26.52(40)
0.03 0.03 0.008 780.6(7) 1567(8) 0.00344(13) 26.1(1.1)
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Table 2: |A2| vs. m2
π after an interpolation/extrapolation to energy conserving kinematics.

m2
π (GeV2) |A2| (10−8 GeV)

0.05521(68) 2.46(14)
0.09470(52) 4.64(14)
0.13432(40) 6.96(12)
0.17425(61) 9.50(20)

0.008 studied in our calculation, but did not attempt to make the sea and valence strange quark
masses agree. We interpolated to energy conserving kinematics as well. When this preliminary data
is plotted alongside the data of [6] in a graph of |A2| vs. m2

π we see a disagreement which could be
explained by different methods of determining the lattice spacing and finite lattice spacing errors.
Also, the present work has the advantage of including 2+1 flavors of dynamical quarks, whereas
all previous work has been in the quenched approximation. In the present work there is only data
for decays to zero momentum pions.

Future plans include doing the full ∆I = 3/2 calculation on 323 ×64 lattices, but with signifi-
cantly stronger coupling so that the resulting larger physical volume will permit using pion masses
much closer to the physical value. Momentum will be given to the pions using twisted boundary
conditions [3, 4, 5, 13] and the kinematics will be very close to physical kinematics.
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