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We calculate form factors relevant for rare B decays using moving-NRQCD for the b quark and the
AsqTad action for the light quarks. Moving NRQCD allows us to work directly with the physical
b quark mass and go to higher recoil momentum compared to standard NRQCD. Here, we show
first results for the matrix elements and the operator matching coefficients. Some difficulties and
possible ways of improvement are discussed.
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1. Introduction

Decays of B mesons via the flavour-changing-neutral-current transition b → s are particularly
sensitive to possible new-physics contributions and provide tests of the CKM mechanism at the
loop level. Measurements of exclusive modes like B → K∗γ have reached a good accuracy, and
call for precise theoretical predictions. These are more difficult than for tree-level decays such
as B → πlν , since a large set of effective electroweak operators contributes and long-distance or
spectator effects can be important. Nevertheless, the computation of hadronic form factors in lattice
QCD is highly desirable and complements continuum approaches.

Matrix element Form factor Relevant decay(s)

⟨P|q̄γµb|B⟩ f+, f0

{
B → πℓν
B → Kℓ+ℓ−

⟨P|q̄σ µνqνb|B⟩ fT B → Kℓ+ℓ−

⟨V |q̄γµb|B⟩
⟨V |q̄γµγ5b|B⟩

V
A0,A1,A2

{
B → (ρ/ω)ℓν
B → K∗ℓ+ℓ−

⟨V |q̄σ µνqνb|B⟩
⟨V |q̄σ µνγ5qνb|B⟩

T1

T2,T3

{
B → K∗γ
B → K∗ℓ+ℓ−

Table 1: Form factors for semileptonic and radiative B decays.

We are currently working on the calculation of the form factors listed in Table 1. The combi-
nation of NRQCD and improved staggered actions for heavy-light mesons has already proven very
successful in the calculation of form factors [1]. In order to extend the kinematic range to high
recoil (lower q2), we now use a moving-NRQCD (mNRQCD) action for the heavy quark. A brief
discussion of our strategy can be found in [2], and a new detailed account of mNRQCD will be
given in [3]. Here, we report on the progress in the computation of matrix elements and operator
matching coefficients achieved so far.

2. Lattice methods

The matrix element ⟨F(p′)|J|B(p)⟩, where F denotes the final pseudoscalar (P) or vector (V )
meson and J is the relevant current in the effective electroweak operator (see Table 1), can be
extracted from the combination of the Euclidean 3-point correlator

CFJB(k(q), k(p), x0, y0, z0) = ∑
y

∑
z

⟨
ΦF(x) J(lat)(y)Φ†

B(z)
⟩

e−ip′·xe−ik(q)·yeik(p)·z (2.1)

with the two-point functions

CBB(k(p), x0, y0) = ∑
x

⟨
ΦB(x)Φ†

B(y)
⟩

e−ik(p)·(x−y), (2.2)

CFF(p′, x0, y0) = ∑
x

⟨
ΦF(x)Φ†

F(y)
⟩

e−ip′·(x−y). (2.3)

Here, ΦB and ΦF are suitable interpolating fields for the initial and final meson, and J(lat) is a lattice
version of the current, obtained by operator matching (see section 3). For the light quarks, we
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convert from 1-component staggered to 4-component naive fields [4]. Due to the use of mNRQCD
for the b quark, the physical momenta p and q are related to the lattice momenta k(p) and k(q) by

p = k(p) +Zp γ mbv,

q = k(q) +Zp γ mbv (2.4)

where Zp ≈ 1 is the renormalisation of the external momentum, γ = 1/
√

1−v2 and v is the boost
velocity. One has p′ = p−q = k(p) −k(q). The physical energy p0 = EB of the B meson is also
shifted,

EB(p) = Ev(k(p))+∆v (2.5)

where Ev(k(p)) is the unphysical energy obtained from the fit to the correlator and ∆v is the velocity-
dependent energy shift. Writing t = |x0 − y0| and T = |x0 − z0|, the correlators are fitted by

CFJB(k(q), k(p), t, T ) →
K−1

∑
k=0

L−1

∑
l=0

A(FJB)
kl (−1)k t(−1)l(T−t)e−E ′

kte−El(T−t), (2.6)

CBB(k(p), t) →
L−1

∑
l=0

A(BB)
l (−1)l(t+1)e−Elt , (2.7)

CFF(p′, t) → 16
K−1

∑
k=0

A(FF)
k (−1)k(t+1)e−E ′

kt (2.8)

or equivalent parametrisations. Every other exponential comes with an oscillating pre-factor, as
required by the use of naive quarks [4]. The correlator CFF receives an extra factor of 16 due
to the trace over a 16× 16 taste matrix, while the heavy-light correlators CBB and CFJB receive
contributions from only one taste [4]. The ground-state fit parameters are related to the matrix
elements as follows:

A(FJB)
00 =


√

ZV

2EV

√
ZB

2EB
∑

s
ε j(p′,s) ⟨V

(
p′,ε(p′,s)

)
| J |B(p)⟩, F = V,

√
ZP

2EP

√
ZB

2EB
⟨P

(
p′

)
| J |B(p)⟩, F = P

(2.9)

A(BB)
0 =

ZB

2EB
(2.10)

A(FF)
0 =


∑

s

ZV

2EV
ε∗

j (p′,s)ε j(p′,s), F = V,

ZP

2EP
, F = P.

(2.11)

The amplitudes
√

ZB,
√

ZP and
√

ZV in (2.9) depend on the form of the interpolating fields ΦB, ΦP

and ΦV and can be extracted from (2.10) and (2.11).

3. Operator matching

The continuum currents J must be replaced by lattice currents J(lat) containing suitable match-
ing coefficients to correct for the different ultraviolet behaviour of QCD and lattice mNRQCD.
As only the high-energetic modes with E & mb differ in the theories and αs(mb) ≪ 1, matching
coefficients can be computed perturbatively.
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We use tadpole-improved 1-loop lattice perturbation theory. The Feynman rules are generated
automatically [5] and diagrams are evaluated using the Monte Carlo integrator VEGAS.

The first step is the computation of a set of heavy-quark renormalisation parameters from the
self-energy diagrams: the zero-point energy E0, the wavefunction renormalisation Zψ , the renor-
malisation of the mass Zm and the renormalisation of the boost velocity Zv [6, 3]. Results for the
full improved O(Λ2

QCD/m2
b) lattice mNRQCD action will be presented in [3].

Once these parameters are known, one can proceed with the calculation of matching coeffi-
cients. For the (axial-)vector currents, these have been computed in the static limit (i.e. neglecting
O(ΛQCD/mb) corrections in J(lat)), and the calculation including the O(ΛQCD/mb) corrections is
underway [7]. In the following, we focus on the tensor current, which, in the continuum, is given
by1

Jµν
7 =

e
16π2 mb qσ µνb with σ µν =

i
2
[γµ ,γν ]. (3.1)

We work in the static limit. At this order in the heavy-quark expansion there are two operators with
different Dirac structure in lattice mNRQCD. For the µ = 0 components one has

J0ℓ
7,1 = − e

16π2 mb

√
1+γ

2γ

(
qσ0ℓΨ

(+)
v

)
,

J0ℓ
7,2 = i

e
16π2 mb v

√
γ

2(1+γ)

(
qσ0ℓ⃗v̂ · γ⃗γ0Ψ(+)

v

)
(3.2)

where Ψ(+)
v denotes the mNRQCD field with the antiquark components set to zero. On the lat-

tice, these operators mix under renormalisation; the one-particle irreducible vertex correction that
contributes in the static limit is shown in Fig. 1.

qΨ
(+)
v

J
0,ℓ
7,j

Figure 1: Vertex correction diagram.
Figure 2: Matching coefficients for the tensor current. The
subtraction point is µ = 1/a.

Writing J0ℓ
7,± = J0ℓ

7,1 ± J0ℓ
7,2, we obtain the lattice operator

J(lat)0ℓ
7 = (1+αsc0ℓ

1 )J0ℓ
7,1 +(1+αsc0ℓ

2 )J0ℓ
7,2

= (1+αsc0ℓ
+ )J0ℓ

7,+ +αsc0ℓ
− J0ℓ

7,−. (3.3)

The matching coefficients c0ℓ
± must be adjusted such that J(lat)0ℓ

7 has the same one-loop matrix
elements as the tensor operator in the continuum theory. They depend on the lattice spacing and
contain a logarithmic ultraviolet divergence as the tensor operator is not conserved.

1For the matching calculation, we treat the light quark as massless; in this limit the matching coefficients for the
last two operators in Tab. 1 are equal due to chiral symmetry.
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Results using an improved O(ΛQCD/mb) mNRQCD action at am = 2.8, n = 2, the AsqTad
action for the light quark and the Lüscher-Weisz gluon action are shown in Fig. 2. The matching
coefficient of the operator J0ℓ

7,−, which only arises at 1-loop level, is strongly suppressed and the
dependence on the frame velocity is found to be small for all matching coefficients.

4. Details of the numerical calculations and first results

In our first computations of the 3-point functions (2.1) we used the local interpolating fields
ΦB(z) = q̄′(z)γ5b(z) and ΦF(x) = q̄′(x)ΓFq(x) with ΓP = γ5, ΓV = γ1,2,3. As in standard NRQCD,
the heavy-quark Green function Gb(y,z) can be obtained by solving an initial value problem. Let
us consider the case x0 > y0 > z0. Schematically, as initial value at z0 we use the propagator of
the light valence quark, γ5 Gq′(z,x), and then evolve the heavy-quark Green function up to the time
slice y0 where we perform the contraction with the various gamma matrices and the other light-
quark propagator Gq(x,y) = γ5G†

q(y,x)γ5. This method only requires light-quark propagators with
a fixed origin x, and, since the current is inserted only in the final contraction, allows the efficient
simultaneous computation of arbitrary currents.

These initial calculations were done on 400 MILC gauge configurations of size 203 ×64 with
2+1 flavours of light quarks, at β = 6.76 and a−1 ≈ 1.6 GeV. The light sea quark masses were
amu = amd = 0.007, ams = 0.05 and the light valence quark masses amu = amd = 0.007, ams =
0.04 (we used the AsqTad action). On each configuration, we took four different origins x, and
additionally averaged with the time-reversed process.

Even though we have implemented the full O(Λ2
QCD/m2

b) mNRQCD action, we only used an
O(ΛQCD/mb) mNRQCD action here to save computer time. This is sufficiently accurate since we
only considered currents in the static limit here. The heavy-quark mass was set to amb = 2.8 and
the stability parameter was n = 2. All lattice momenta and the boost velocity were always pointing
in 1-direction. In this case, 21 combinations of operators/indices and final-state polarisations give
non-zero contributions, and all the form factors listed in Table 1 can be extracted from them.

We performed Bayesian multi-exponential fits in the two variables T and t. Gaussian priors
for the ground state energies were taken from fit results of the corresponding two-point functions,
with widths equal to the error from the fit result. The mNRQCD energy shift ∆v (see eq. (2.5)) was
determined non-perturbatively from heavy-heavy meson dispersion relations (for those, the full
mNRQCD action accurate to v4

nr in heavy-heavy power counting was used). A bootstrap analysis
was used to determine the form factors and their statistical errors.

To give some examples, plots of the 3-point correlators ⟨ ΦK s̄γ0b Φ†
B ⟩ and ⟨ ΦK∗ s̄σ13b Φ†

B ⟩
at the largest q2 (with v = 0) are shown in Fig. 3 and 4. The results for the tensor current in
combination with the vector meson final state are much noisier. As expected, the statistical errors
are seen to grow further when the recoil momentum is increased. In Fig. 5 and 6 we show the
corresponding correlators at v = (0.4,0,0) and k(p) = 2π

L (1,0,0), k(q) = 2π
L (2,0,0). Note that for

the fits shown here, 4..6 timeslices from the source/sink were skipped, so that K = 2, L = 4 (for
the vector final state) or K = 1, L = 3 (for the pseudoscalar final state) was sufficient in (2.6). The
results can probably be improved by extending the fitting range and using more exponentials.

Finally, in Fig. 7 and 8 we show some first results for the form factors f0, f+, fT and T1, T2.
Note that the momentum of the meson in the final state (K or K∗) was exclusively set to the very
small values p′ = 0 or p′ = 2π

L (−1,0,0). This is made possible by the use of moving NRQCD.
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Figure 3: Three-point correlator ⟨ ΦK s̄γ0b Φ†
B ⟩ at

k(p) = 0, k(q) = 0, v = 0. The fitting range is T = 14 ...18
and t = 6 ... (T −5).
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Figure 4: Three-point correlator ⟨ΦK∗ s̄σ13b Φ†
B ⟩at

k(p) = 0, k(q) = 2π
L (1,0,0), v = 0. The fitting range is

T = 8 ... 20 and t = 4 ... (T − 4) (not all data shown for
legibility).
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Figure 5: Three-point correlator ⟨ ΦK s̄γ0b Φ†
B ⟩ at

k(p) = 2π
L (1,0,0), k(q) = 2π

L (2,0,0), v = (0.4,0,0). The
fitting range is T = 14 ...18 and t = 6 ... (T −5).
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Figure 6: Three-point correlator ⟨ΦK∗ s̄σ13b Φ†
B ⟩at

k(p) = 2π
L (1,0,0), k(q) = 2π

L (2,0,0), v = (0.4,0,0). No
reasonable fit was achieved yet.
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Figure 7: The form factors f+, f0, fT (points
for f+ and fT are offset horizontally for legibil-
ity). The points at lowest q2 have v = (0.4,0,0),
k(p) = 2π

L (1,0,0), k(q) = 2π
L (2,0,0).
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Figure 8: The form factors T1, T2. The points at
lowest q2 have v = (0.2,0,0), k(p) = 2π

L (1,0,0),
k(q) = 2π

L (2,0,0).

6



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
8
0

Rare B decays with moving NRQCD and improved staggered quarks Stefan Meinel

5. Conclusions

Using moving-NRQCD and AsqTad actions, we have calculated matching coefficients for the
heavy-light axial-, vector- and tensor currents in the static limit using 1-loop lattice perturbation
theory, and performed first computations of form factors for rare B decays. While moving NRQCD
significantly reduces discretisation errors at low q2, our initial results suffer from large statistical
errors, overshadowing the advantages of the method. However, statistical errors do not constitute a
fundamental obstacle and can be reduced further. The first step will be to extend the fitting range
and include more exponentials. Then, we plan to work with random-wall sources, which were
shown to provide considerable improvement for semileptonic decays at high recoil momentum [8].
We will also use smeared interpolating fields to reduce contributions from excited states, thereby
improving the fits. Furthermore, note that our initial computations were done with lattice momenta
pointing in the 1-direction only. Off-axial momenta and boost velocities will also allow lower
values for q2, for example by using the final meson momentum p′ = 2π

L (−1,−1, 0).
Once statistical errors are under control, we will study the dependence on the lattice spac-

ing and the light quark masses. We also plan to include O(ΛQCD/mb) operators in the matching
calculations.
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