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1. Introduction

Whilst the singlet sector of QCD has been well studied using lattice QCD within thequenched
approximation and even withN f = 2 there have been few studies usingN f = 2+1. Computational
cost is the main reason for this — the computation of correlators for singlet mesons involves the
calculation of disconnected diagrams which are inherently noisy and so require a long Monte Carlo
timeseries in order to be accurately measured.

We are engaged in a study of the scalar and pseudoscalar singlet sectors of QCD withN f =

2+1 flavours of “Asqtad” improved staggered quarks [1]. The MILC ensembles have given Asqtad
a strong track record in terms of physical results and they are one of the cheapest of the fermion
formalisms to simulate, allowing us to build up a large number of configurations.

2. Simulation Details

Using the UKQCD’s QCDOC [2] we have generated these large ensembles at 2 different lattice
spacings using the one-loop tadpole-improved Lüscher-Weisz gauge action [3] The generation of
theβ = 7.095 ensemble is still underway and is over halfway to completion. The lattice spacing
has been obtained through a determination ofr0/a from the static quark potential (takingr0 =

0.467fm). From here on theβ = 6.75 ensemble will be referred to as the “coarse” ensemble, and

N f β L3×T aml ams r0/a a [fm] Ncfg Ntraj Target

2+1 6.75 243×64 0.006 0.03 3.8122(74) 0.12250(24)5375 32250 30000
2+1 7.095 323×64 0.00775 0.031 5.059(10) 0.09230(19)1911 11466 20000

Table 1: Ensembles generated.

theβ = 7.095 ensemble will be referred to as the “fine” ensemble.

2.1 Algorithm

The coarse ensemble was generated using the RHMC algorithm as formulatedin [4], with a
second order leapfrog integrator. This has the benefit of being an exact algorithm, compared to the
inexact R algorithm [5] used by the MILC collaboration which hasO(δτ2) errors, and so allows
for larger integrator timesteps. The fine ensemble also used the RHMC algorithm but exploited the
improvements of Clark and Kennedy [6] which include mass preconditioning of the light fermion
kernel with the strange quark, and thenth-root multiple pseudofermion trick. Combined these allow
us to use the fourth order Omelyan integrator with the gauge fields and fermionfields on different
timesteps.

2.2 Measurement

When measuring fermionic operators using staggered fermions we must takeinto account both
the spin and taste structure of the state in question. To this end we work in the spin⊗ taste-basis
notation of Kluberg-Stern. The states which we consider are the singlet scalar1⊗1 and the singlet
pseudoscalarγ5⊗1. In principle we could also use theγ4γ5⊗1 operator for the singlet pseudoscalar
but for reasons to be discussed we use theγ5⊗1.
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The connected diagrams are measured using standard point sources, and we use the stochastic
volume source method to measure the disconnected diagrams. UsingNs Gaussian noise sources
we compute the operators for theΓS ⊗ΓT state thus

OΓS⊗ΓT (t) =
1
Ns

Ns

∑
i

∑
x,x4=t

∑
y,y4=t

Trη i†
y ∆ΓS⊗ΓT M−1

yx η i
x , (2.1)

where the∆ΓS⊗ΓT covariantly and symmetrically shifts the source in the hypercube and applies the
relevant Kogut-Susskind staggered phase in order to obtain the correct state. The disconnected
contribution to the correlator is then calculated using

DΓS⊗ΓT (∆t) = 〈O†
ΓS⊗ΓT

(t)OΓS⊗ΓT (t +∆t)〉 (2.2)

with the appropriate VEV subtraction for the scalar singlet.
For certain choices of∆ΓS⊗ΓT (those that separate source and sink by an even number of links)

we are able to apply a variance-reduction trick [7] which allows us to use eight or fewer noise
sources and still obtain a stochastic error comparable to the gauge error.This is applicable to both
theγ5⊗1 and1⊗1 operators, and is why we chooseγ5⊗1 overγ4γ5⊗1. However since it is only
applicable to a subset we still useNs = 32 in order to obtain a good estimate of other operators.

2.3 Disconnected Statistics

As has been mentioned previously disconnected contributions carry with them the noise of
the fermionic sea and so in order to reduce statistical noise a large number of configurations is
required. Even more troublesome for theγ5⊗1 is its relation to the topological charge which has a
notoriously long autocorrelation time.

In Figure 1 we show the reduction in relative error achieved from performing such a long run.
This improvement should carry over directly to an improvement in the error on an estimate of the
η ′−π mass difference since the ratio of the disconnected to the connected correlator is related to
this. For further details on theDC -ratio and the statistics of the disconnected contribution the reader
is referred to our methods paper [8].

3. Scalar flavour-singlet Spectroscopy

Whilst the heavy scalar singlet mesons (χc0, χb0) are well understood in terms of their con-
stituent quark content the light scalar meson sector is far from as well understood. The interpreta-
tion of the light scalar singlet states — thef0 resonances — has eluded many experimental studies,
phenomenological models and even lattice studies.

The particle data table lists five scalar singlet states with mass less than 2 GeV — thef0(600) [σ ],
f0(980), f0(1370), f0(1500) and f0(1710). The quark model predicts only two light isoscalarqq
states (f and f ′) so the picture for the light isoscalar mesons is obviously more complicated. A pop-
ular conjecture is that the three heavier states are produced by a mixing of the two flavour singlet
statesf and f ′ with the light scalar glueball.

The scalar glueball has been well studied in quenched lattice QCD and is accepted to have
a mass in the region 1.5− 1.7 GeV [9, 10]. However in dynamical simulations the sea quarks
cause the glueball and 0++ qq interpolating operators to couple to the same states and the glueball
becomes a less well defined concept.
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Figure 1: The relative error (e(∆t)
.
= ε(∆t)

Dqq(∆t)
, whereε(∆t) is the standard error on the mean ofDqq(∆t)) on

the light-light disconnected correlators for theγ5⊗1 (with VKVR applied, and local source and sink) for
various subsets of the full UKQCD long coarse run, shown against theβ = 6.76,ml = 0.01,ms = 0.05 MILC
coarse ensemble.

3.1 Glueball Interpolating Operators

In order to perform a mixing study it is necessary to design our operatorsso that they couple as
strongly to the desired state as possible. In order to couple to a mainly glue stateG with JPC = 0++

we use the following operator

Oi(p, t) = ∑
~x

(

2
i
xy(~x, t)+2

i
yz(~x, t)+2

i
zx(~x, t)

)

e
2πi
L p·~x (3.1)

where the2i
kl are plaquettes in thekl-plane withi = 0, . . . ,3 levels of Teper blocking [11] applied

to the gauge field, on top of 2 levels of APE smearing [9] with smearing constant c = 2.5. We have
measured these operators atp ·p = 0 andp ·p = 1 for the fine ensemble, and so far atp ·p = 0 for
the coarse ensemble. With our set of operators we form the 2×2 correlator matrix C as

Ci j(τ) = 〈O†
i (t)O j(t + τ)〉−〈Oi〉〈O j〉 (3.2)

for the zero-momentum operators, and

Ci j(τ) = 〈O†
i (t)O j(t + τ)〉 (3.3)

for thep ·p = 1 operators, and use the variational method to obtain a set of operators withmaximum
projection onto the ground state. Finally we use the ratio of the variational eigenvaluesλ0,λ1 to
project out the remaining contamination [12], obtaining our final mass estimate

am0(t) =
ame f f (t)−

λ1
λ0

ame f f (t −1)

1− λ1
λ0

. (3.4)
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Figure 2: r0meff(t) vs t/r0 for both the fine and coarse glueball operators, with bothp ·p = 0 and 1 for the
fine andp ·p = 0 for the coarse. The effective mass has been calculated using equation 3.4.

3.2 Taste Symmetry Violation

Rather than removing the doublers completely, the staggered formulation reduces the 16 dou-
blers to 4 degenerate “tastes” of fermion. These are then reduced to oneby taking the fourth-root
of the fermion determinant. Unfortunately the taste symmetry is broken by interactions with the
gauge field which leads to large mass discrepancies between hadrons of different tastes. The Asqtad
action [1] has improved taste-symmetry violations (O(α2

s a2)), and is the most widely used stag-
gered action. The physical validity of the fourth-rooting procedure hasbeen called into question,
but there is a large body of theoretical work confirming the validity of the resulting rooted action
(see [13, 14] for reviews), although not everyone is convinced [15].

In previous analyses of the scalar non-singlet statea0(980)/a0(1450) [16, 17] it was noticed
that the mass obtained was significantly below the lowest allowed decay threshold mπ +mη . Indeed
its mass appeared to be more consistent with aππ state which, due to G-parity, is forbidden as a
decay channel for the scalar non-singlet. This was explained within the framework of staggered
chiral perturbation theory (SChPT) as being due to unphysical multi-hadron states being introduced
by the taste-splitη-multiplet [18]. The most significant of these is theππ state which at large time
completely dominates thea0 correlator.

It is also the case that there are such unphysical contributions to thef0 correlator, though
fortunately there are explicit predictions from SChPT for these contributions to both thef0 anda0

correlators [19] which in principle should allow us to include the contaminationsin our fits.
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Figure 3: Our measurements of the 0++ glueball mass plotted againsta2, with previous UKQCD analyses
of the 0++ glueball on MILC ensembles and UKQCD quenched ensembles using the Wilson gauge action.
The horizontal lines are at the positions of thef0 resonances.

3.3 Results

Analysis of the scalar-singlet fermionic operators is ongoing, so we present results for the glue-
ball interpolating operators only. Our final mass estimates are obtained fromthe weighted average
of the projected effective mass (equation 3.4) over the plateau region. For the coarse ensemble this
is done for the momentum-zero effective mass on 4804 configurations betweeent = 1 andt = 4,
and for the fine ensemble for the momentum-one effective mass on 1000 configurations between
t = 2 andt = 5 (see Figure 2). This gives masses in physical units ofMG(0++) = 1629(32) MeV
for the coarse ensemble, andMG(0++) = 1600(71) MeV for the fine ensemble. These are shown
in the context of previous lattice determinations of the 0++ glueball mass in Figure 3.

Currently thep ·p = 0 effective mass shows no plateau for the fine ensemble, and we have yet
to measure the momentum-one operators for the coarse ensemble, but it is ourintention that the
weighted average be performed over bothp ·p = 0 and 1 when this becomes possible.

4. Pseudoscalar flavour-singlet Spectroscopy

The light pseudoscalar flavour-singlet mesons —η andη ′ — are particularly interesting due
to the role topology plays in the mass of the latter, and the importance of disconnected diagrams in
calculations involving them. It is also an important test of the validity of the fourth-root trick used
with staggered fermions. It has been suggested [15] that even after thecontinuum and chiral limits
have been taken the chiral behaviour of staggered fermions will not matchthat of QCD. Study of
theη ′ should help show whether or not this is the case.
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The improvement in the statistical error on the disconnected operators fromsuch high statistics
has been shown in Figure 1. Analysis of our correlators is ongoing so wedo not present any results
here, but for a detailed account of our motivation and methodology the reader is referred to our
exploratory study [8].
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