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In this talk, I describe and defend four non-standard claims about four effective field theories, 
and try to extract some lessons about the limits of effective field theory. The four theses (and  a 
capsule diagnosis given in parentheses) are: 1) Kaon loops are not a reliable part of chiral 
perturbation theory (dimensional regularization does not know about the chiral scale), 2) Regge 
physics is inappropriately missing from SCET (an infinite set of scales are needed) 3) There is 
likely a barrier in the use of EFT in general relativity in the extreme infrared (curvature effects 
build up) and 4) Gauge non-invariant operators should be included in describing physics beyond 
the Standard Model (as they could probe the idea of emergent gauge symmetry and falsify string 
theory). 
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1. Introduction 

 The title of this talk is admittedly a little provocative. Effective field theories don't 
themselves fail. However we are not infallible and the theories are sometimes subtle. Since we 
advertise these theories as being completely rigorous, it is important that we examine what we 
do in order to to see if it meets the standards of full rigor. In this talk, I will make four claims 
that challenge our present practice, and I will briefly give supporting arguments. While these 
describe specific issues, I have tried to frame them in terms of lessons which may be more 
general. Hopefully a discussion of these claims will be an opportunity to understand our 
effective field theories better. 

2.  There is no warning light on the machine 

   My thesis of this section is that kaon loops are not a reliable part of chiral perturbation 
theory. The diagnosis points to dimensional regularization as the culprit for why we do not 
readily know this. There can be related issues in other EFTs bucause of the ubiquity of use of 
dimensional regularization.  

 
   There are two key foundations of effective field theory that deal with the separation of 

heavy degrees of freedom from the light ones in an effective field theory. One is the decoupling 
theorem (the Appelquist Carrazone theorem [1]) that tell us that the effects of heavy particles go 
into local terms in a field theory, either renormalizeable couplings or in non-renomalizeable 
effective interactions suppressed by powers of the heavy mass. The other is the work of 
Wilson[2] who taught us how to separate the degrees of freedom above and below a given 
energy scale and then to integrate out all the high energy effects and form a full field theory 
with the remaining degrees of freedom below the separation scale. 

 
  In chiral perturbation theory the ρ(770) is not present in the effective theory so that it is 

clear that it has been integrated out. Chiral perturbation theory therefore has a separation of the 
heavy DOF from the light ones at around the rho mass. Indeed, the energy expansion of the tree 
level Lagrangians readily reveals this mass as the primary scale of chiral perturbation theory. 
Loop diagrams however run over all energies, in principle even those beyond the scale of the 
EFT. If we actually used a Wilsonian cutoff separating light from heavy scales, then loop 
diagrams would reveal this scale also. However, cutoffs are awkward to deal with, so we use 
dimensional regularization. When regularized dimensionally, loop integrals don't have any 
sense of where the separation scale of the EFT lies and therefore can include scales beyond it. 
Indeed the dominant contributions could be from beyond it, for all we know. Moreover, the m2 
ln m2 chiral logarithms grow without bound and, taken seriously, would eventually violate the 
decoupling theorem. It is in this sense that there is no warning light - the loop calculation itself 
does not tell us if it is reliable or not. 

 
 It is relatively easy to see that for mesons of mass m, the relevant energy scale in loop 

diagrams is 4m2 rather than  m2 - this factor of four will be important. One way to see this is that 
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the right scale is to note that all the kinematic functions that come from loop diagrams are 
functions of q2/4m2. A typical example is the finite part of the standard chiral loop integral 
which has the form the prediction of the pion electromagnetic form factor [3,4] which is  

 
where the kinematic parts of the loop is contained in the function 

 
Here we can see the factor of 4m2 explicitely. 
 

More generally, we know that we can reconstruct Feynman diagrams from their cuts and 
poles. For chiral loops, there are only cuts and these start at 4m2. For these cuts to reproduce 
one-loop chiral Feynman diagram, the tree amplitudes due to the cuts must be those predicted 
by lowest order chiral Lagrangains. The only way that the loops can be reliably predicted is if 
the trees are themselves reliable at the energy 4m2 and beyond. 

 
Let us show this in a rigorously calculable example. There are two chiral sum-rules [5] 

that express physical examples in terms of known on-shell intermediate states. These state that 

  
Here ρV-A(s) is a spectral function that describes the on-shell intermediate states which can be 
produced by vector or axial-vector currents. It can be extracted from tau decays and from e+e- 
interactions. The full form of this spectral function [6] is shown in Fig 1, with ALEPH data 
being the dominant contribtuion. The peaks seen are the vector ρ(770) resonance and the axial-
vector a1(1260) resonance.  

s (GeV) 
Fig. 1. The experimental spectral function ρV-A(s) which enters the dispersive predictions of the 
chiral parameters.  
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The quantities being predicted here are the pion decay constant and one of the low energy   
parameters of the chiral Lagrangian which enters into radiative pion decay, L10 [3]. Both of the 
quantities contain chiral logarithms from loop diagrams. Explicitly 

 
and 

 
The goal is to understand under what conditions the chiral logarithms are reliable.  

 
We can make chiral predictions for the low energy porition of these spectral functions, and 

this allows us to use these to see how chiral logs arise. The low energy behavior of the spectral 
function is just a product of tree amplitudes for the p-wave vector-pi-pi coupling and has the 
form 

 
A blow-up of the very low energy region of the spectral function is shown in Fig. 2, along with 
the chiral prediction.   

 

 
Fig. 2. A blow up of the very low energy end of the spectral function. The solid curve is the 
chiral prediction, and the points are the data.  
 
We see that the chiral prediction holds at low energies, followed by the ρ and a1 resonances. The 
ρ and a1 portions (both short distance in nature) go into determining the low energy constants, as 
is well known in the chiral literature.  These sum-rules then allow us to explicitely see the low 
energy contributions and the short distance physics in a case where we have a good handle on 
both.   
 
        The low energy behavior generates chiral logs. This can be seen by explicit computation. 
First let us break the integral up into the threshold prediction of chiral symmetry and the higher 
energy portion, for which we would use the experimental data to get the short distance 
contibution: 
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In this case, the threshold gives the full chiral log contribution to the sum rule: 

 
Likewise for Fπ , we get a chiral log from the threshold region: 

 
So we see that in the dispersive treatment, the low energy representation of the cut pion tree 
amplitudes has turned into chiral logs that we normally get from loop integrals. In the case of 
the pion, these are reliable because the chiral prediction for the vector-pi-pi amplitude is valid at 
these energies. 
 
              What about the kaon? This is a very different situation. It is clear that the kaon 
threshold starts at 4 mK

2 ~ 1GeV2. This is well above the onset of short distance physics and we 
have no expectation that the chiral prediction should be accurate at this energy. Indeed, 
experimental data on the kaon contribution to the spectral function exists [7], and it does not 
look at all like the chiral form, see Fig. 3. The chiral prediction for the kaon spectral function is 
not reliable because the kaon threshold occurs beyond the limit of validity of chiral perturbation 
theory.  
 

 

 
Fig. 3. The kaon contributions to the vector (left) and axial-vector (right) spectral functions.   

 
We have seen that theory and experiment both tell us that kaon loops are not a reliable part 

of chiral perturbation theory because the relevant expansion parameter 4mK
2/mρ

2 is larger than 
unity. This would have been evident if we had used a Wilsonian procedure of including only the 
physics below mρ with a strict separation, i.e. by employing some form of a cutoff on the loops 
(or the dispersion integral). However, we used dimensional regularization and it returned the 
mK

2 ln mK
2 form without realizing that it came from scales that are firmly outside of the validity 

of the effective field theory.  
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One might object that we have had two decades of phenomenology of chiral physics 
involving kaon loops and the theory works, especially in the meson sector. However, it is almost 
a theorem that kaon loops are hidden by the chiral low energy constants (LECs) (such as L10,  or 
L4,5 above). To see this, set the pion mass to zero as this does not change the kaon loops. The 
kinematic effect depending on energies, such as given above for the pion form factor, do get 
suppressed as factors of q2/mK

2. The residual chiral logs turn into factors of ln mK
2/μ2, where μ 

is the scale associated with dimensional rgurlarization. The ln μ dependence is always 
associated with a chiral LEC as it is related to the running of the LECs. Therefore we always 
find the ln mK

2 also associated with a LEC. At fixed values of mK then the kaon chiral logs are 
then hidden by the presence of a chiral LEC and can be accommodated in phenomenology by a 
shift in the LEC.1  

 
An exception to this statement is in the chiral extrapolation business. If you change the 

kaon mass, the chiral logs give a special non-analytic form that is different from the analytic 
behavior of the LECs. The chiral logs give a strong curvature to a chiral extrapolation in the 
meson mass. However, it is now clear that the lattice data do not show the effects of chiral logs 
for masses around the kaon mass. (See J. Flynn's review at this conference [8] or L. Lellouch's 
review at Lattice 2008 [9].) My argument above explains why this is the case - chiral 
perturbation theory should not contain these loops for mesons of this mass. The use of cutoff 
regularization has also been used to argue this point [10], but I have made the argument without 
any use of models. Indeed we see that the quantitative criteria for reliability of the loop 
diagrams is 4m2 << mρ

2 or m << 385 MeV. 
 
The other exception to the statement about hiding the effects of kaon loops is in the baryon 

sector. There are non-analytic terms that are not logarithmic, i.e. m3. For example in the baryon 
masses there are very large mK

3 effects. These are not readily hidden by a low energy constant, 
and do have a bad effect on the phenomenology, creating corrections that are 100% of the size 
of the leading term.  By going to high orders in the chiral expansion and adding very large  
counterterms, one is able to adjust the final results to match the physical values [11]. However 
the chiral expansion breaks down in the process, becoming perilously close to the form M= M0 
[1 - 1 + 1 - ...].  Similar excessively large effects occur elsewhere in baryon chiral perturbation 
theory with kaons. Moreover, in addition to these phenomenological problems, there are 
theoretical problems [12]. Analysis of these loop diagrams shows that almost all of the 
dimensionally regularized result for the loop integral comes from short distance physics. This is 
shown in Fig. 4, from [12] where the long distance portion, calculated with a cutoff 
regularization with a cutoff Λ, is seen to be small and obey decoupling, while the dimensionally 
regurlarized form violates decoupling badly as the m3 terms grow rapidly without bound . While 
the m3 non-analytic behavior does appear in both results at very small meson masses, it is no 
longer reliable at the physical value of the kaon mass and the residual effects below the cutoff 
are much smoother. Again this is corroborated in lattice results (displayed by M. Savage at this 
                                                 

1 The caveat that keeps this from being a real theorem is that there could be further analytic term proportional to 
mK

2 without the log, which emerges distinct from the LEC. However, I know of no such "naked" effects in standard 
phenomenology 
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conference [13]) which are quite smooth without evidence of the strong chiral non-analytic 
behavior. 

 

 
Fig. 4. The result for the Feynman integral giving the non-analytic m3 dependence using 
dimensional regularization and also a cutoff regularization.  

 
I have argued on theoretical grounds that kaon loops are not a reliable part of chiral 

perturbation theory, and pointed to phenomenology which supports this claim. The diagnosis 
points to the use of dimensional regularization, which has no scale, as the reason why this was 
not evident previously. This is one of the subtleties that come when we think of effective field 
theory in terms of energy scales but employ a loop regulator that does not know about these 
scales. 

 

3. Way too many scales 

The separation of different scales is one of the cornerstones of effective field theory. But 
what would happen if a given process required effectively an infinite hierarchy of scales? I will 
argue that this is required if Regge behavior is to be incorporated in the Soft Collinear Effective 
Theory (SCET), and is perhaps one of the reasons that this has not yet been accomplished. 
Moreover, I will argue that many of the results of SCET cannot be viewed as firmly established 
until the Regge issue is fully understood. 

 
Daniel Wyler and I are in the process of putting out a paper describing this in detail [14], 

so I will concentrate on the underlying logic here and refer the interested reader to that paper for 
the formulas. 

 
Regge theory describes physics in the high energy kinematic region s→ infinity with 

momentum transfer t fixed. The key feature for our discussion here is that with the exchange of 
Reggeons, the amplitudes become functions of sα(t) where α(t) = α(0) + α' t is the Regge 
exponent. The leading high energy behavior of scattering amplitudes is given by "soft" Pomeron 
exchange with α(0) = 1.02. In cases where t is fixed but large enough, Lipatov and collaborators 
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[15] have shown perturbatively  that QCD exhibits Regge behavior, with a Reggeized gluon and 
a "hard" Pomeron. From both this theoretical work and from experimental efforts over many 
years, it is clear that Regge physics is part of QCD. 

 
On the other hand, SCET has been developed to describe the interactions of high energy 

quarks and gluons through the exchange of soft and collinear particles [16]. This includes the 
Regge region, so why has Regge behavior not been understood in SCET yet? This issue is 
relevant to the applications of SCET. For example, BBNS [17] first argued that certain B decay 
amplitudes factorize and that soft final state interactions phases are of order 1/mB

2 - this is 
supported in SCET. However, if the Regge behavior can enhance the final state rescattering 
behavior by a power of sα(0) , with s~mB

2 and α(0) =1.02, the suppression of soft phases is 
completely removed. This was argued to be the case in Ref. [18] and remains possible due to the 
lack of understanding of Regge in SCET. Other SCET statements are also suspect due to sα(0) 
power corrections until Regge behavior is understood within the theory. 

 
The origin of Regge behavior in field theory is understood. We refer the reader in 

particular to the book by Ross and Forshaw [19] which provides a thorough treatment. Regge 
behaviour comes from multi-loop ladder diagrams describing particle exchanges in the t-
channel, as in Fig 5. It is the kinematics that is relevant for the comparison with SCET.  

 
Fig. 5. The ladder diagrams whose sum gives Regge behaviour in field theory. 
 

Analysis of a general n-rung ladder diagram shows that the energy denominator, after 
Feynman parameterization, behaves as  

 
In general this diagram would fall as s-n except near the kinematic corner with all xi=0. In this 
corner, one obtains a logarithmic result 

 
When the infinite set of ladder diagrams are summed, the logs are promoted to a power sβ-1=sα. 
It is this feature of logs turning into powers which can upset the present predictions of SCET. 
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Fig. 6. The cut ladder diagrams. The rungs of the ladder are all on-shell. 
 

In order to see what kinematics this corner of parameter space corresponds to, it is best to 
reconstruct the loop diagrams from the cuts - in this case we need only the s-channel cut that 
crosses the n- rungs of an n-loop ladder diagram, see Figure 6. For the cut, the gluons of the 
rungs are on-shell and the legs of the ladder are off shell by an amount of order t1/2.  Let us 
describe this in the center-of-mass with the top particle moving to the right with energy s1/2 and 
the bottom particle moving to the left with the same energy. In SCET variables the right moving 
and left moving light cone variables are  

 
respectively. As one moves down the rungs of the ladder, the momentum on a vertical leg is 
constrained by the requirement that the cut rung be on-shell. In words, the on-shell condition for 
the rungs of the ladder requires that the momenta be ordered in a special way. In particular, as 
one goes down from the top of the diagram, each of the legs has to carry less "right-moving" 
momenta than the one above it, and also more "left-moving momenta" than the one above it. So 
the legs are ordered with decreasing "rightness" going down, and increasing "leftness", 
interpolating between the right-moving top line and the left-moving bottom line. This part is 
purely kinematics.  
 
      However, it is also possible to show that the factors of ln(s) only arise when the legs are 
strongly ordered - i.e. with the step down in "rightness" being parametrically large. Let us 
describe this decrease in momentum by a multiplicative factor η treating it as a small parameter. 
If the leg has almost the same momenta  as the one above it, the logarithms do not occur and 
Regge behaviour is not obtained. This results in each of the rungs being directionally collinear 
with the one above it, but with a parametrically smaller energy. 

 
This can be described in formulas, but the sense is best conveyed by an illustration. Let us 

imagine the ten loop diagram at the energy 105 GeV. If we use η =1/10, the momenta would be 
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What we see here is a series of legs that are mostly collinear to the one next to it in the chain, 
but with rightness decreasing as one goes down and leftness increasing. There is a soft particle 
in the middle of the chain. In reality, η is not a fixed factor but is integrated over. However, the 
ln (s)  behavior does not come from the region where η ~1, so it is not a normal collinear gluon 
of SCET. In fact, for η <<1, the rung is collinear to the leg above it but is parametrically smaller 
in energy – we can call this a fast gluon. It is different than the other gluons in the SCET 
classification. There is a soft particle somewhere down this chain, where dominant right-movers 
communicate with dominant left-movers. 

 
For a SCET description we would define a series of parametrically smaller collinear 

particles. One can’t readily obtain the right kinematics with only a single collinear type of 
gluon, because all the action would occur at the kinematic endpoint of the domain of validity. 
Since one sums loops from one to infinity, this would in principle need to be done for an infinite 
number of times as s is infinitely large. This is a challenge for effective field theories. In 
practice, Regge behavior seems to turn on in QCD at a several GeV, so that approximate 
treatments with finite s appears to be sufficient. However, the multiple scales seem to be an 
intrinsic feature of the Regge kinematics.  

4. Making a mountain out of a molehill 

The usual criterion for the utility of effective field theory is that the field configurations 
carry little energy, or equivalently have little space-time variation in coordinate space. But even 
if the fields are slowly varying, their effect can build up if they continue over long enough 
distances. I will argue that an effect of this nature happens in the application of effective field 
theory to gravity2. I am unsure of the importance of the effect, but nevertheless it is an 
interesting non-standard feature that deserves to be understood better. 

 

                                                 
2 This is a refinement of an argument given in [20] 
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 General relativity displays the characteristics of an effective field theory [20]. The 
curvature carries two derivatives of the fields and (ignoring the small cosmological constant) the 
action can be expanded in a derivative expansion. Around flat space the usual momentum 
behavior is obtained 

 
and if one Fourier transforms to coordinate space one obtains (in the same order) 

 
describing a long distance expansion. Explicit calculation leads to a parameter free prediction 
for the quantum correction due to general relativity [21] 

 
However there are indications that at very long distances, this nice expected behavior 

could be spoiled. For example consider a horizon. The horizon itself is not the problem locally. 
If we are in free fall through a horizon of a large distant black hole, we could still construct a 
locally flat set of coordinates and use effective field theory in this neighborhood if the curvature 
is small enough. However, in this situation we could not extend our coordinates out to infinity - 
no signal can propagate to spatial infinity. So a potential such as described above is not correct 
at all distances - failing in the extreme infrared. Even if the quantum effect is extremely tiny in 
this region, as an issue of principle the power dependence must be modified.  

 
 In addition, the Hawking Penrose theorems tell us that most space-times contain curvature 

singularities somewhere in the past, present or future. If we have a region that locally has a 
small curvature but nevertheless try to extend our effective field theory to a distance space time 
point (also with small curvature) on the other side of a singularity, the effective theory fails to 
describe the intermediate region. 

 
These hand-waving arguments suggest that it is not just the local curvature that plays a 

role but the cumulative effect of the curvature integrated over long distances. The diagnosis can 
be made more concrete by considering Reimann normal coordinates [23]. At any point we can 
define a set of coordinates that look locally Minkowski, with the deviations being described by 
an expansion in the curvature 

 
Here we see that in a neighborhood of the origin we are roughly flat and well-behaved. For 
small curvatures we can use effective field theory techniques in this region. However, for any R 
there always is a distance where Ry2 becomes of order unity. These coordinates are not good to 
use perturbatively any more. We could go to that distant point and again use a set of Reimann 
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coordinates in that neighborhood. But in either case, we give up the description connecting the 
two distant regions3 . So not only does R have to be small but so does some integrated value of 
R through distance. The criteria for the effective field theory seems to be not only G/r2<<1 (a 
parameter that defines the UV limit of the theory), but also we seem to need Rμναβ r2 <<1 (which 
is a parameter which describes the IR limits of the local expansion). 

 
This idea of an IR expansion parameter representing in some sense the integrated 

curvature explains how horizons and singularities can challenge the techniques of effective field 
theory. Curvature effects built up over long distances eventually result in barriers to local 
calculations. This happens also to the classical corrections when treated perturbatively, but we 
know how to solve the classical equations exactly, leading to the recognition of horizons, etc. 
For the quantum corrections, we have only the perturbative result and are not sure how to 
proceed non-perturbatively. In principle these effects could happen in other theories also, for 
example with photons or if the chiral fields are treated as massless. This is a novel phenomenon 
in effective field theory and seems outside of our present techniques. 

5. Who’d ‘a thunk it?4 

Finally let's discuss the case where an effective field theory treatment is inadequate 
because a seemingly innocuous assumption turns out to be inappropriate. There are probably a 
quasi-infinite number of ways to illustrate this option, but I will choose one that interests me at 
the moment. I will argue that it is potentially a way to differentiate string theory from emergent 
gauge theories. 

 
We use effective field theory to look for physics beyond the Standard Model. The rules of 

the game are to write all operators consistent with the gauge symmetries of the Standard Model, 
to order them by dimension and use the lowest dimensional ones in phenomenology [24]. I will 
argue that emergent gauge theories (should they really exist) would lead to operators outside of 
this classification - specifically to gauge-non-invariant operators. 

 
The search for physics beyond the Standard Model is dominated by unification theories. In 

these, the gauge symmetries that we see at low energy not only persist to high energy, but are 
enhanced by being unified into higher gauge groups with larger symmetries5. This is of course 
an intriguing idea. String theory represents a particularly striking completion of the unification 

                                                 
3 This example used the metric, but the Hawking Penrose theorem says that a similar effect happens in the 

curvature. 
4 My father used to use this phrase when something particularly surprised him. Apparently it is traceable to a  

dummy - Mortimer J. Snerd  - and plays on the correspondence that drink/drunk should imply think/thunk.  
5 If I am trying to be provocative, I may as well argue that we have no historical precedent for the idea of gauge 

unification. Maxwell's feat was not the unification of two gauge theories, but rather the identification of the single 
correct gauge theory. Likewise, the electroweak theory is also not gauge unification but rather gauge mixing. The two 
gauge groups involved do not get united, although the gauge bosons mix. So gauge unification would be a novel 
phenomena if it occurred. To be fair there is also no historical precedent for emergent gauge symmetries, although 
there are plenty precedents for emergent theories in general. 
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paradigm; the many new degrees of freedom are tied together into a finite and highly symmetric 
framework. 

 
There is also a different possibility that has been explored far less fully. This is the idea 

that the gauge symmetries could be low energy emergent phenomena, coming from a 
fundamental theory without gauge degrees of freedom. If the underlying theory had a finite 
number of degrees of freedom, this could be a finite theory. This phenomenon occurs in certain 
condensed matter systems [25]. The original Hamiltonian does not have a U(1) (or higher) 
gauge symmetry, but the ground state of the theory does manifest this and contains gauge 
bosons.  Holgar Nielsen [26] has an attractive argument that gauge theories may emerge from an 
underlying random dynamics. The idea of emergent symmetry faces significant hurdles and may 
turn out to not be possible for the fundamental interactions. However at present it remains an 
intriguing possibility. 

 
If the gauge symmetry is not fundamental, there could be residual gauge violating 

interactions. For example, when one integrates over momentum in a loop integral one 
encounters photon states at the highest energies. We know that if we use a cutoff regularization 
we can violate gauge invariance. In this case, the lack of fundamental photons at the highest 
energies would appear like a cutoff, and since the theory does not have the gauge invariance at 
these energies, there would be good reason to expect a violation of gauge invariance. This 
would not happen in the unification paradigm since the symmetry persists to all energy. If 
general covariance is also emergent, we would expect a violation of it also. Indeed, gravity 
might be the best place to look for anomalous effects because gravitational interactions are 
already suppressed by the Planck scale. 

 
These considerations argue for allowing operators into the general effective Lagrangian 

which violate gauge symmetries and general covariance. The standard rules of the game have 
been formulated with the unification paradigm in mind, but this could be incorrect. We have 
started a study of such effects [27]. A potentially important outcome is that a gauge-violating 
signal would serve to falsify stung theory. In string theory gauge invariance is exact at high 
energies and we would not expect signals of gauge violation. 

6. Concluding comments 

Effective field theory is a set of powerful techniques which allow us to isolate the 
appropriate degrees of freedom and use these in making predictions. The use of EFT has 
become common, but it is still subtle in many instances. This talk explores some of the limits (in 
energy, in multiplicity of scales, in integrated effects and in hidden assumptions)  which could 
upset our present practices in effective field theory. I hope that a discussion of these phenomena 
can lead to a better understanding of effective feld theory in general.  
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