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The B-meson light-cone distribution amplitude (LCDA) is defined as the matrix element of a
quark-antiquark bilocal light-cone operator in the heavy-quark effective theory (HQET) and is
a building block of QCD factorization formula for exclusi®meson decays. When the corre-
sponding bilocal HQET operator has a light-like distanbetween the quark and antiquark fields,

the scale~ 1/t separates the UV and IR regions, which induce the cusp singularity in radiative
corrections and the mixing of multiparticle states in nonperturbative corrections, respectively. We
treat the bilocal HQET operator based on the operator product expansion (OPE), disentangling
the singularities from the IR and UV regions systematically. The matching at the next-to-leading
order as is performed in theMS scheme with a complete set of local operators of dimension

d <5, through a manifestly gauge-invariant calculation organizing all contributions in the coordi-
nate space. The result exhibits the Wilson coefficients with Sudakov-type double logarithms and
the higher-dimensional operators with additional gluons. This OPE yieldB-theson LCDA

fort less thanv 1 GeV 1, in terms ofA = mg — my and the two additional HQET parameters as
matrix elements of dimension-5 operators. The impact of these novel HQET parameters on the
integral relevant to exclusiv@ decaysAg, is also discussed.
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For the exclusiv-meson decays, such Bs— 111, py, . . ., systematic methods have been de-
veloped using QCD factorization based on the heavy-quark ItriB]. In the corresponding fac-
torization formula of the decay amplitude, essential roles are played by the light-cone distribution
amplitudes (LCDAs) for the participating mesons, which include nonperturbative long-distance
contributions. In particular, in addition to the LCDAs for the light mesamg, etc., produced in
the final state, the LCDAp, for theB meson, defined as the vacuum-to-meson matrix elerdgnt [

@it 1) = iF(lu)<0|cT<tn>Pé9f3dA“'A““>ﬁyshv<0>rB‘<v>> - [doe o (0p).  ©

also participates in processes where large momentum is transferred to the soft spectator quark via
hard gluon exchangd/[H3]. Here, the bilocal operator is built of thequark and light-antiquark
fields,hy(0) andq(tn), linked by the Wilson line at a light-like separatiom with n, as the light-
like vector 1> =0, n-v = 1), andv, representing the 4-velocity of th® meson; a difference
betweenT) and the familiar pion-LCDA is thdt,(0) is an effective field in the heavy-quark effec-
tive theory (HQET) 4 denotes the scale where the operator is renormalized; gmlis the decay
constant in HQETE (i) = —i(0|gwyshy|B(V)). The RHS inll) defines the momentum representa-
tion, with wv' denoting the LC component of the momentum of the light antiquark.

The “IR structure” of l), studied using constraints from the equations of motion (EOM) and
heavy-quark symmetrip|, as well as the “UV structure”, calculated in the 1-loop renormalization
of the bilocal operator inl) [6], is notoriously peculiar compared with the pion LCDA. For a
full description of Il) which would involve a complicated mixture of the IR and UV structures,
we first calculate the radiative corrections, taking into account hard and soft/collinear loops. The
one-particle-irreducible 1-loop diagrams (1LDs) for the 2-point functigftn)hyshy,(0)) of (1)

yield [7] ({---) = (0|---|B(v)), the Wilson line is suppressed, a@d = (N2 —1)/(2N;))

_alr [t 1 L ., 57 11 g
1os= G [Pae [{~ (g, a7V 35) 000+ (5~ a0) (6.

- (1 + L)}(q_(ftn)ﬁygh\,(O» —1 (;R f2L—1- E) (a(&tn)v- Wy@shv(O))}Jr- - @)

28R

in D = 4 — 2¢ dimensions and Feynman gauge, whiete In[i(t —i0)ue¥*] with the MS scaleu
and the Euler constant. The “vertex-type” correction that connects the light-like Wilson line
andq(tn) in (1) is associated with only the massless degrees of freedom and yields the scaleless
loop-integral that gives the term with the “canceling” UV and IR polgsyy — 1/&r, and with the
“plus”-distribution (& /(1—&)) as the splitting function; this term is identical to the corresponding
correction for the case of the pion LCDA. The other term@2jrh@ave “non-canceling” UV and IR
poles: another vertex-type correction around a “cusp” between the two Wilson lines, the light-like
Wilson line of (1) and the time-like Wilson line fronm,(0) = Pexgig [°,, dAv- A(AV)]hy(—cov),
gives the terms proportional (1 — &), which contain the double as well as single UV pole,
corresponding to the cusp singulari6j.[ The “ladder-type” correction, connecting the two quark
fields in (1), gives all the remaining terms if2), which contain the IR poles and are associated
with not only the bilocal operator irllf, but also the higher dimensional operators; the ellipses in
(2) are expressed by the operators involving two or more additional covariant derivatives.

The renormalized LCDA is obtained by subtracting the UV poles frém(th the trivial
quark self-energy corrections complemented. Here, the term with the plus-distriloé&ioh—
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£)). is analytic (Taylor expandable) & 0, similar to the pion LCDA, but the other terms are not

analytic due to the presence of logarithmd.? [6, 8]. In particular, the nontrivial dependence of

the latter terms oty throughL implies that the scale 1/t separates the UV and IR regions. Thus,

we have to use the operator product expansion (OPE) to treat the different UV and IR behaviors

simultaneously: the coefficient functions absorb all the singular logarithms, while, for the local

operators to absorb the IR poles, we have to take into account many higher dimensional operators.

Such OPE with local operators is useful when the separat®iess than the typical distance scale

of quantum fluctuation, i.e., when< 1/u. We note that an OPE for tt&meson LCDA L) was

discussed in9], taking into account the local operators of dimensibs 4 and the NLO Q(as))

corrections to the corresponding Wilson coefficients in a “cutoff scheme”, where an additional

momentum cutofi\yy (> Aqcp) was introduced, and the OPE, in powerslpf\yy, was derived

for the regularized momentd); = é\UV dww' @, (w, ), in particular, for the first two moments

with j = 0,1; note,M; — o asAyy — o [4]. Here, we derive the OPE fot), taking into account

the local operators of dimensiah< 5 and calculating the corresponding Wilson coefficients at

NLO accuracy. Following the discussion above, we carry out the calculatiangat/u in the

coordinate space and in tMS scheme, so that there is no need to introduce any additional cutoff.
The most complicated task is the reorganization of contributions from (many) Feynman dia-

grams in terms of the matrix element of gauge-invariant operators including higher dimensional

operators, in particular, the three-body operators of dimension 5, sugB.a#yshy, with the field

strength tensoG, [4,5]. To derive the NLO Wilson coefficients associated with such operators,

we have to compute the 1-loop diagrams for the 3-point function, as well as those for the 2-point

function as in2), where the former diagrams are obtained by attaching the external gluon line to

the latter diagrams in all possible ways. We employ the background field métBpavhere the

background fields represent the nonperturbative long-distance degrees of freedom and satisfy the

exact classical EOM. We use the Fock-Schwinger gaxfgléeff) (x) = 0, for the background gluon

field AL, This gauge condition is solved to givé’ (x) = folduuﬁGgC&(ux) [10], which allows us

to reexpress each Feynman diagram in terms of the matrix element of the operators associated with

the field strength tensor. Also, this ensures that the Wilson ling)jiraé well as the heavy-quark

propagator, does not couple directly to the background gluons while a massless quark or gluon

propagator couples to them. With the matching inM@scheme, we obtail¥] the OPE,

- 2 7
qitn)Pes oA mAlmpen, 0) =¥ (t, o () + Y G L w e (W + Y GOt w o (u)
K=1 =
3)
where the summation is over a basis of local operators of dimelutsiﬁéq) (k=1,2,...), defined
as 0" = apyehy, {6} = {qlin- D)piwsh, qliv- D)iyehv}, and {6,”'} = {qlin - D)?ysh,
qliv- D)(in- D)iyshy, Gliv- D)2iyshy, GigGapva nPriyshy, GigGagy? nPyshy, GigGap y? VP iyshy,
chGaﬁo“BIﬂygh\,}, with another light-like vectom? = 0, asv, = (n, +n,)/2. The NLO Wilson
coefficients are obtained as

(3) _ . 9Cr (0 5 (4) S PRCC S 5
Pt ) =1- = <2|_ +o+> ) Gl =it [1- o (2P L5 ) |

aCe (2,2, , 5
- <2|_ +3kt 35 )| (4)

t2
(aL-3), cPtw=-3

(4) _ ita<Cr
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and, for the explicit form 0C£5>(t,u),C§5) (t,u),... ,C§5>(t,u), we refer the readers td][ Here
and belowy is theMS scale, andrs = as(u). The double logarithrh? in the coefficient functions
originates from the cusp singularity (s23)( The 1-loop corrections for the 2-point function induce
all of the above ten operators using the EOM, while those for the 3-point function induce only
@(55)76_7 associated with the field-strength tensor; as a result, the coeﬁi@é?ég_s,(t, [) involve
the terms proportional to the color factog = N. as well as t&Ce [7]. '

Taking the matrix element--) = (0|---|B(v)) of (3), we can derive the OPE form of the
B-meson LCDA ). The matrix elements of the local operators/8) &re known to be related
to a few nonperturbative parameters in the HQET, using the EOM and heavy-quark symmetry as
demonstrated ird; 5]: (0\) = 4iF (u)A/3, (657) = iF (u)A, with F of (1) andA = mg — m,
representing the mass difference betweerBimeson andb-quark, and all seven matrix elements
<ﬁ|£5)> for the dimension-5 operators can be expresseEl,b& and two additional HQET param-
etersAg and Ay, which are associated with the chromoelectric and chromomagnetic fields inside
theB meson agqgE - aysh,) = F(u)A2(u) and{qgH - oysh,) = iF (1)A3 (1), respectively, in the
rest frame wherg = (1,0). As a result, we obtairi7] the OPE form for the LCDA[),

~ asCr (. - 52\ . 4N alr (. » 9 52
P TR TEL A Rl T S T I
(L4 an ( ety )iy an TR
o2l GCe(, o 16 35 5m\] tAEW) [, aCr [, ., 2 5w
t2A2[1 4n<2L+3L =+ 3 T G SR e
4 <4L zﬂ s |1 ar \F T3t ) e Y O

which takes into account the Wilson coefficients@s) and a complete set of the local operators
of dimensiond < 5. Fourier transforming to the momentum representation and taking the first two
(j =0,1) regularized-momentd); = fé‘“v dww! @, (w, 1), the contributions from the first line in
(5), associated with matrix elements of the dimension-3 and -4 operators, coincide completely with
the result obtained irQ]. The second and third lines iB)(are generated from the dimension-5
operators. Our OPE resul)(“merges” the UV B] and IR structuresq] peculiar to theB-meson
LCDA, so that it embodies novel behaviors that are completely different from those of the pion
LCDA: u andt are strongly correlated due to the logarithmic contributidns, In|i(t —i0) ue¥],
from radiative corrections, so that the DA is not Taylor expandable abeud, which in turn
implies the UV divergence in the momen#; B, 9], M; — o as/Ayy — ». The DA receives
the contributions from (many) higher dimensional operators, in particular, from those associated
with the long-distance gluon fields inside tBemeson. It is instructive to draw a comparison
with the previous results, concerning UV or IR structure: one can pftjvihdt (5) satisfies the
renormalization group equation f@)( which is governed by the evolution kern6] fletermined by
the (single) UV poles ird). On the other hand5f reveals that the solution of the EOM constraints
for (1), which was obtained irl5], is subject to additional effects from radiative corrections, see
[7] for the detail (see als@]). Such corrections to the EOM constraints at ordein perturbation
theory is peculiar to the heavy-meson LCDAs in the HQET and does not arise for the case of the
(higher twist) LCDAs for the light mesong, p, etc. [11].

Our OPE form[g) allows us to parameterize all nonperturbative contributions ifBtheeson
LCDA (1) by three HQET parameter&, Ae andAy, and gives a model-independent description
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Figure 1: TheB-meson LCDA afu = 1 GeV using the OPE (left) and its continuation with a model (right).

of theB-meson LCDA wheit < 1/u (< 1/Aqcp), taking into account the UV and IR structures si-
multaneously. Here, we evaluats) at the scalgt =1 GeV:A =mg—Mmyin (5) is defined by thé-
guark pole massy,. Following [9], we eliminateA in favor of a short-distance paramet&bA, free
from IR renormalon ambiguities and writtens= Apa (i) [1+ (7/16mCr ag) — (9/8m) UCk as, to
one-loop accuracy/;_\DA(u) can be related to another short-distance mass parameter whose value
is extracted from analysis of the spectra in inclusive de@ys Xsy andB — X/l v, leading to
KDA(u =1 GeV) ~ 0.52GeV [9]. For the novel parameters associated with the dimension-5 op-
erators, we use the central valuesAgiu) = 0.11+0.06 Ge\?, A3 (u) = 0.1840.07 Ge\?, at
U =1 GeV, which were obtained by QCD sum ruld}; [no other estimate exists fdg or Ay. We
calculate®) for imaginary LC separation, performing the Wick rotation —it [4, 8].

The results forp, (—it,u = 1 GeV) using 5) are shown as a function afin the LHS of
Fig. 1 [7]: the wide-solid curve shows the whole contributionsS)f (vhile the narrow-solid curve
shows the result forts — 0; the NLO perturbative corrections are at the 10-30% level for moderate
T of order 1 GeV'! ~ 1/u, while they are very large for — 0 because of singular logarithms
L? andL. The dashed and dot-dashed curves show the contributions of the first two terms and the
first line in (5), respectively, associated with the operators of dimerngier8 andd < 4, while the
dotted curve gives the results @) (WwhenAg = Ay = 0. For moderatea, the contributions from
the dimension-4 operators suppress the DA by 30-40%, but the dimension-5 operators, in contrast,
lead to enhancement by 10-20% with significant effects fdgnandAy. Our B-meson LCDA [B)
indeed works up to moderate LC distanaesvhere the hierarchy among the dashed, dot-dashed,
and wide-solid curves demonstrates convergence of the GPE (

The two-dot-dashed curve in the LHS of Fig. 1 shows the behavior of the two-component
ansatz by Lee and Neube8][which is given in momentum space as

1 w 4KDA w
i) i) ©

where the second term reproduces the correct asymptotic behavior of tii fA@ > Agcp and
the first term represents the nonperturbative component modeled by an exponentid] fovithn[
w =2.33GeV,N=0.963 andwy = 0.438GeV atu = 1 GeV; these parameters are fixed by match-

CF as
w

0N () =N a";zew/“b +6(0- @)
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A2 =0.11GeV?, A3 =0.18Ge\? AZ=AF =
c[GeV] | N | ap[GeV] AgtGev1] N | ap[GeV] )\ -1 GevY
0.4 0.816| 0.257 | 3.11(0.23+2.88) | 0.832| 0.301 (o 23+2.46)
0.6 0.850| 0.306 | 2.70(0.35+2.35) | 0.899| 0.394 2 19 (0.35+ 1.84)
0.8 0.852| 0.308 | 2.69 (0.47+2.22) | 0.966| 0.461 | 1.99 (0.46+ 1.53)
1.0 0.858| 0.313 | 2.66 (0.58+2.08) | 1.11 | 0.572 | 1.79 (0.56+1.23)
( (
( (
(

1.2 | 0.910| 0.349 |251(0.67+1.84) || 1.55 | 0.839 | 1.56 (0.64+ 0.92)
1.4 1.09 | 0.456 | 2.22(0.76+1.46) | 443 | 1.95 |1.32(0.71+0.61)
1.6 1.81 | 0.777 | 1.87(0.83+1.04) | 9.82 | —455 | 1.11(0.77+0.34)

Table 1: Parameters of the model functidty (tap + 1) for T > 1. with different values ofre, and the
results of the inverse momeng *(pt) at i = 1 GeV, with the first and second numbers in the parentheses
denoting the contributions from the first and the second terms in the RHS of (7).

ing the firsttwo ( = 0,1) cut—momentsfé‘“" dww! (pﬂ\‘ (w, 1) with the OPE for the corresponding
cut-momentdVip 1 derived in B], where the operators of dimensidn< 4 and the corresponding
Wilson coefficients at NLO are taken into account. Fof 1 GeV 1, the Lee-Neubert ansaig)(
shows behavior similar té@f with Ae = Ay = 0 substituted; note that the first term 6) pproduces
particular contributions associated with the operators of dimension-5 and higher.

For T > 1 GeV 1, the contributions associated with higher-dimensional operators become
important, and the OPE diverges (s& &nd Fig. 1); thus, one has to rely on a certain model
for the larget behavior and connect the model-independent descriptions at small and moder-
ate 1 to that model. The results in Fig. 1 suggest the possibility of connecting the behavior for
T < 1c (tc ~ 1 GeV1) given by our OPE formB) to that fort > ¢, given by the coordinate-
space representation of the first term/@¥, (5’ dwe=“" (Nw/wg) e~ “/“ = N/ (T + 1)%. Here,
N and wy can be determined such that both the resulting totalMir,u) and its derivative
0cﬁ+(—ir,u)/0r are continuous at = 7. In the LHS of Table 1, we shovi/] the values ofN
and wyp obtained by solving the corresponding conditions of the continuityfer 1 GeV. (The
RHS of Table 1 shows the results that would be obtained by solving the similar continuity con-
ditions withAg = Ay = 0.) In the RHS of Fig. 1, the wide-solid and two-dot-dashed curves are
same as those in the LHS, and the dotted, solid-gray, and dashed curves show the behavior of the
above model functiorM/(rwoJrl) for T > 1. with 7. = 0.6, 1.0, and1.4 GeV 1, respectively,
using the corresponding values Mfand ay in the LHS of Table 1; these three curves behave as
~ N/(a@T?) at larger, with largerN/« than those o) and the RHS of Table 1. Indeed, we can
show thatN/ag = (9/4A3,) {1+ TcApa [AZ/ABa+ AR/ (2A3) — 1] } + - -+, using the continuity
of @, (—it, ), d@. (—iT,u)/dT atT = T, and thus the contributions A and)\H enhanceN/ ug.

Using these results, we calculate the first inverse moment of the LCDA,

datw = [ a0 20— [Farg, (it + [drg(-inw) @

which is of particular interest for the QCD description of excludmeson decays. We substi-
tute 5) and the model functiorlN/ (Tap + 1)?, into the first and the second terms in the RHS,
respectively, and the results are shown in Table 1 for each valug[@]. The “stable” behav-
ior observed for0.6 GeV! < 1. <1 GeV! in the LHS of Table 1 and in the RHS of Fig. 1
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suggests thaz\gl(u =1GeV)~27GeV1 ie,Ag(u=1GeV)~0.37GeV. This value ofAg
is somewhat smaller than the previous estimates that include nonperturbative and/or perturbative
QCD corrections8,19,12] (e.g., 6) givesAg(u = 1 GeV) ~ 0.48 GeV). A value ofAg that is as
small as our value was adopted t].[ Note that in the RHS of Table 1 withe 4 = O, the stable
behavior is not seen as clearly as in the LHS, Andssumes larger values than in the latter. These
results demonstrate that the novel HQET paramedersndAy, associated with the dimension-5
quark-antiquark-gluon operators, could lead to smaller valuWgsofn particular, using the values
A2 =0.17 Ge\?, A3 = 0.25 Ge\?, which correspond to their upper bound from the QCD sum rule
estimate ap = 1 GeV [4], we find that the wide-solid curve in Fig. 1 becomes further enhanced in
the moderate region, so that{) givesAg(u = 1 GeV) ~ 0.2 GeV or smaller.

To summarize, we have derived the OPE that embodies both the notorious UV and IR be-
haviors of theB-meson LCDA, including all contributions from the local operators of dimension
d < 5 and the corresponding Wilson coefficients at NLO accuracy. This OPE provides us with the
most accurate description of tBemeson LCDA for distances less thanl/Agcp. We have also
used the model-independent behaviors from our OPE to constrain the long-distance behavior of
the LCDA and estimate the first inverse momagt'. The results demonstrated the impact of the
novel HQET parameters, associated with the dimension-5 quark-antiquark-gluon operators.
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