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We provide the analysis of charmless two-body B→V P decays under the framework of the soft-
collinear-effective-theory, where V (P) denotes a light vector (pseudoscalar) meson. Using the
available data, we fit 16 non-perturbative inputs responsible for the B → PP and B → V P decay
channels in the χ2 fit method. We find that chiraly enhanced penguins can change several charm-
ing penguins sizably, but most of the other non-perturbative inputs and predictions on branching
ratios and CP asymmetries are not changed too much. We predict the branching fractions and CP
asymmetries of other modes especially Bs →V P decays. The agreements and disagreements with
results in QCD factorization and perturbative QCD approach are analyzed.
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B→ PP,V P in SCET Cai-Dian Lü

1. Introduction

Charmless hadronic B decays are helpful for the precise test of the standard model and the
search for possible new physics scenarios. In recent years, great progresses have been made in
the studies of charmless two-body B decays. These decays were dynamically investigated in three
popular theoretical approaches: the QCD factorization (QCDF) [1, 2, 3], the perturbative QCD
(PQCD) [4, 5, 6], and the soft-collinear effective theory (SCET) [7, 8]. Despite many differences,
all of them are based on power expansions in ΛQCD/mb, where mb is the b-quark mass and ΛQCD

is the typical hadronic scale. Factorization of the hadronic matrix elements is proved to hold to the
leading power in ΛQCD/mb in a number of decays.

SCET provides an elegant theoretical tool to separate the physics at different scales. The
matching from QCD onto SCET is always performed in two stages. The fluctuations with off-
shellness O(m2

b) is firstly integrated out and one results in the intermediate effective theory SCETI .
In SCETI , the generic factorization formula for B→M1M2 is written by:

〈M1M2|Oi|B〉= T (u)⊗φM1(u)ζ B→M2 +TJ(u,z)⊗φM1(u)⊗ζ B→M2
J (z), (1.1)

where T and TJ are perturbatively calculable Wilson coefficients. In the second step, the fluctu-
ations with typical off-shellness mbΛQCD are integrated out and one reaches SCETII . In SCETII ,
end-point singularities prohibit the factorization of ζ , while the function ζJ can be further factor-
ized into the convolution of a hard kernel (jet function) with light-cone distribution amplitudes.
In the phenomenological framework proposed in Ref. [9], the expansion at the intermediate scale
µhc =

√
mbΛQCD is not used. Instead the experimental data are used to fit the non-perturbative

inputs. This method is firstly applied to B→ Kπ , B→ KK and B→ ππ decays [9]. Subsequently,
it is applied to charmless two-body B→ PP decays involving the iso-singlet mesons η and η ′ [10].

In our work [11], we extend this method to the B→V P decays and use a wealth of the experi-
mental data to fit the non-perturbative inputs (in our analysis, we also take the B→ PP decays into
account). Besides leading power contributions, we also take into account a part of chiraly enhanced
penguin whose operator basis and the factorization formulae are derived in Ref. [12, 13].

2. Decay amplitudes of B→M1M2 in SCET

In SCET, the factorization formula for B→M1M2 is easily proved to hold to all order in αs: the
amplitudes have the form of a convolution of the universal light-cone distribution amplitudes and
the perturbative hard kernels. Using the perturbative expansion in αs(

√
mbΛ) for the jet functions

and in αs(mb) for the Wilson coefficients, one can predict the branching ratios, CP asymmetries
and other observables for B → M1M2 decays. One can also use another parallel method: the non-
perturbative parameters can be fitted by experimental measurements on the B → M1M2 decays.
This approach is especially useful at leading order in αs, since then the hard kernels T1(u) are
constants, while T1J(u,z) are functions of u only. Furthermore at this order, terms with hard kernels
T g

1J(u,z), T g
1 (u), T g

1Jg(u,z), T g
1g(u) do not contribute at all. Thus the decay amplitudes of B→M1M2

decays at LO in αs(mb) are written by:

A(B→M1M2) =
GF√

2
m2

B

{
fM1

[
ζ BM2

J

∫
duφM1(u)T1J(u)+ζ BM2

Jg

∫
duφM1(u)T1Jg(u)

]
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+ fM1(T1ζ BM2 +T1gζ BM2
g )+λ ( f )

c AM1M2
cc +(1↔ 2)

}
, (2.1)

where AM1M2
cc denotes the non-perturbative charming penguins. Ti are hard kernels which can be

calculated using perturbation theory. Based on the flavor structure of the four-body operators and
five-body operators, it is possible to construct master equations for hard kernels Ti [11]. The four
functions ζ BM1 , ζg and ζ BM2

J ,ζ BM2
Jg are treated as non-perturbative parameters to be fitted from

experiment measurements.
Power corrections are expected to be suppressed at least by the factor ΛQCD/mb, but chiraly

enhanced penguins are large enough to compete with the leading power QCD penguins as the sup-
pression factor becomes 2µP/mb, where µP ∼ 2 GeV is the chiral scale parameter. Thus in both
of QCDF [1, 2, 3] and PQCD [4, 5, 6] approaches, it has been incorporated in the phenomeno-
logical analysis. In the framework of SCET, the complete operator basis and the corresponding
factorization formulae for the chiraly enhanced penguin are recently derived in Ref. [12, 13]. The
factorization formula will introduce a new form factor ζχ and a new light-cone distribution ampli-
tude φ pp. As shown in Ref. [13], the term proportional to ζχ does not give sizable contributions.
Thus in our analysis, we neglect it and only consider the remanent terms:

Aχ(B→M1M2) = ±GF√
2

m2
B

(
−2µM1 fM1

mB

){
T χ

1 ζ BM2 +T χ
1Jζ BM2

J +T χ
1gζ BM2

g +T χ
1Jgζ BM2

Jg

+(1↔ 2)
}

. (2.2)

For B→ PP decays, the chiraly enhanced penguin takes a plus sign; while in B→V P decays, when
emitting a pseudoscalar meson, the amplitude take a minus sign; when a vector meson emitted,
there is no contribution from chiraly enhanced penguin since µV = 0.

Under the assumption of flavor SU(3) symmetry for B to light meson form factors and charm-
ing penguin terms, the 16 real inputs responsible for B→ PP and B→V P decays are summarized
as

ζ BP, ζ BP
J , ζg, ζJg, ζ BV , ζ BV

J , APP
cc , APV

cc , AV P
cc , APP

ccg, AV P
ccg. (2.3)

3. Numerical analysis of B→V P decays

With these data for branching fractions and CP asymmetries, χ2 fit method can be used to
determine the non-perturbative inputs: form factors and charming penguins. Straightforwardly,
we obtain the two solutions for numerical results of the 16 non-perturbative inputs [11] at the
leading power. After the inclusion of chiraly enhanced penguins, several parameters in there two
solutions are changed. As shown in Fig. 1, chiraly enhanced penguins have the same topology with
the charming penguins. The former two diagrams do not only contribute to decays without iso-
singlet mesons η or η ′ but also decays with these mesons. The two diagrams in the lower line only
contribute to decays involving η or η ′, where q = q′. The inclusion of chiraly enhanced penguin
will mainly change the size of three charming penguins APP

cc , APP
ccg, APV

cc . Predictions for branching
fractions and CP asymmetries are not changed sizably.

Our predictions on branching fractions of B̄0→ π±ρ∓ decays are smaller than those in QCDF [3].
The main reason is the smaller B → P and B → V form factors predicted by the SCET, while
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b qb

q̄q̄d(s) d(s)

q̄′ q̄′ q̄′

b qb q

q̄q̄d(s) d(s)

q̄′ q̄′ q̄′ q̄′

q

q̄′

Figure 1: Feynman diagrams for chiraly enhanced penguins (left) and charming penguins (right). The two
diagrams in the lower line only contribute to decays involving η or η ′, where q = q′.

QCDF uses much larger form factors. In the SCET, BR(B̄0 → ρ+π−) is a bit smaller than
BR(B̄0 → ρ−π+). In the first solution, the fitted B → V form factor A0 = 0.233 is almost equal
with the B → P form factor F = 0.206. Since the decay constant of ρ meson is much larger than
that of π: 0.209/0.131∼ 1.5, we expect BR(B̄0 → ρ+π−) is only one half of BR(B̄0 → ρ−π+).
Charming penguins AV P

cc and APV
cc can slightly change the ratio: the charming penguin APV

cc in
B̄0 → ρ+π− gives a constructive contribution, while AV P

cc in B̄0 → ρ−π+ gives a destructive con-
tribution. In the second solution, contributions proportional to form factors are almost equal with
each other, as the B → V form factor AB→V

0 = 0.291 is much larger than FB→P = 0.198 which
can compensate differences caused by decay constants. But unlike in the first solution, the role of
charming penguin totally changes: the charming penguin in B̄0 → ρ+π− gives a destructive con-
tribution, while AV P

cc in B̄0 → ρ−π+ can give a constructive contribution. It is reasonable, since the
charming penguins AV P

cc and APV
cc almost interchanges the phases.

Our predictions for branching ratios of B̄0 → π0ρ0 are larger than that in QCDF. In this chan-
nel, two kinds of charming penguin almost cancel with each other, since they have similar mag-
nitudes but different signs. The tree contribution proportional to the soft form factor ζ is color-
suppressed (the Wilson coefficient C2 + C1

Nc
∼ 0.12 is small compared with that of B̄0 → ρ±π∓:

C1 + C2
Nc
∼ 1.03), thus the branching fractions of B̄0 → π0ρ0 in QCDF approach and PQCD ap-

proach are muchsmaller than BR(B̄0 → ρ±π∓). One important feature of the SCET framework
is: the hard-scattering form factor ζJ is relatively large and comparable with the soft form factor ζ .
Besides, since this term has a large Wilson coefficient b f

1 = C2 + 1
Nc

(1− mb
ω3

)C1 ∼ 1.23, it can give
larger production rates which are consistent with the present experimental data.

In b → s decay amplitudes, tree operators are highly CKM-suppressed, but the CKM matrix
elements for the rest two kinds of contributions (penguin operators and charming penguins) are in
similar size. Together with the hierarchy in Wilson coefficients: C1,2 ÀC3−10, charming penguins
will provide a dominant contribution. For example, the penguin operators in B− → π−K̄0 decay
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process is proportional to a4 + rχa6, B− → π−K̄∗0 is proportional to a4 while B− → ρ−K̄0 is
proportional to a4 − rχa6, where a4,6 = C4,6 +C3,5/Nc and rχ = 2µP/mb. If we only consider
the emission diagrams, BR(B− → π−K̄0) > BR(B− → π−K̄∗0) > BR(B− → ρ−K̄0) holds,
since a4 ∼ a6 and rχ ∼ 1. But in the present framework, contributions from penguin operators
proportional to VtbV ∗

ts do not play the most important role. Compared with charming penguins in
two solutions, we find penguin operators are smaller than charming penguins. According to the
size of charming penguins, we expect the relation BR(B−→ ρ−K̄0)∼BR(B−→ π−K̄∗0). This
is well consistent with the experimental data.

4. Comparisons with the PQCD approach

b qb

q̄d(s)

q̄′ q̄′ q̄′

q̄

q

q̄′

d(s)

(a) (b)

Figure 2: Feynman diagrams for the (S−P)(S+P) annihilation operators in PQCD approach and charming
penguins in SCET.

PQCD approach is based on kT factorization, where one keeps the intrinsic transverse mo-
mentum of quark degrees of freedom. The intrinsic transverse momentum can smear the end-point
singularities which often appear in collinear factorization. Resummation of double logarithms re-
sults in the Sudakov factor which suppresses contributions from the end-point region to make the
PQCD approach more self-consistent. This approach can explain many problems to achieve great
successes. In PQCD approach, annihilation diagrams can be directly calculated. Among them, the
(S−P)(S + P) annihilation penguin operators (from the Fierz transformation of (V −A)(V + A)
operators) are the most important one. According to the power counting in PQCD approach, anni-
hilation diagrams are suppressed by ΛQCD/mb but the suppression for (S−P)(S + P) annihilation
penguin operators is 2rχ . This factor is comparable with 1. Thus annihilations play a very impor-
tant role in PQCD approach. Phenomenologically, the large annihilations can explain the correct
branching ratios and direct CP asymmetries of B0 → π+π− and B̄0 → K−π+ [14], the polarization
problem of B→ φK∗ [15], etc. In Fig. 2(a), we draw the Feynman diagrams for this term. Compar-
ing with charming penguins, we can see they have the same topologies in flavor space. Generally
speaking, charming penguins in SCET as shown in Fig. 2(b) have the same role with (S−P)(S+P)
annihilation penguin operators in PQCD. Both of them are essential to explain the branching ratios
in these two different approaches. But there are indeed some differences in predictions on other
parameters such as direct CP asymmetries and mixing-induced CP asymmetries.

First of all, the CKM matrix elements associated with charming penguins and (S−P)(S +P)
annihilation penguin operators are different. If we consider B̄ decays in which a b quark annihi-
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lates, the (S−P)(S+P) annihilation penguin operators are proportional to VtbV ∗
tD, while charming

penguins are proportional to VcbV ∗
cD. The differences in the CKM matrix elements will affect direct

CP asymmetries and mixing-induced CP asymmetries sizably in some channels.
In PQCD approach, contributions from the (S−P)(S +P) annihilation penguin operators can

be calculated using perturbation theory. These contributions are expressed as the convolution of
light-cone distribution amplitudes and a hard kernel. We can also include SU(3) symmetry break-
ing effects in the calculation in PQCD approach. In SCET, charming penguins are from the charm
quark loops. Since the charm quark is heavy, one can not factorize charming penguins. In the
present work based on SCET, we have assumed SU(3) symmetries for the contributions from
charming penguins. The magnitudes and strong phases of charming penguins can not be calcu-
lated using perturbation theory which obtained by fitting the experimental data.

The third difference is the magnitudes of charming penguins in SCET and contributions from
the (S−P)(S +P) annihilation penguin operators in PQCD approach. This difference arises from
the different power counting in the two approaches. We take b → s transitions to illustrate the
difference. In PQCD approach, the (S−P)(S +P) annihilation penguins are enhanced to be of the
same order with penguins in emission diagrams. In SCET, charming penguins are more important.
Charming penguins in SCET always larger than contributions from emission penguin diagrams.

In PQCD approach, the (S−P)(S + P) annihilation penguin operators are chiraly enhanced
and the dominant contribution is from the imaginary part. The main strong phases in PQCD ap-
proach which are essential to explain the large CP asymmetries in many channels are also produced
through from these operators. But in SCET, strong phases of charming penguins are not too large.
Accordingly, our predictions on direct CP asymmetries are smaller compared with predictions in
PQCD approach.

5. conclusions

We provide the analysis of charmless two-body B→V P decays under the framework of soft-
collinear-effective theory. Besides the leading power contributions, we also take some power cor-
rections (chiraly enhanced penguins) into account. In this framework, decay amplitudes of B→ PP
and B → V P decay channels are expressed in terms of 16 non-perturbative inputs: 6 form factors
and 5 complex (10 real) charming penguins. Using the B→ PP and B→V P experimental data on
branching fractions and CP asymmetry variables, we find two kinds of solutions in χ2 fit method
for these 16 non-perturbative inputs. Chiraly enhanced penguin could change some charming pen-
guins sizably, however most of other non-perturbative inputs and results of branching ratios and
CP asymmetries are not changed too much. With the two sets of inputs, we predict branching
fractions and CP asymmetries. Agreements and differences with results in QCD factorization and
perturbative QCD approach are also analyzed.
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