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1. Introduction

In a recent paper [1] we proposed a chiral non-relativistic EFT whichincluded two dibaryon
fields [2] as a fundamental degrees of freedom. This EFT, which will be simply referred as NNEFT
in this paper, is renormalizable and has simple counting rules when dimensionalregularization
(DR) and minimal subtraction (MS) scheme are used. The nucleon-nucleonscattering amplitudes
in the 1S0 and3S1 channels were calculated at NLO and a good description of data achievedin
the 0− 50MeV energy range. We report here on a calculation at N2LO, which was carried out
in [3], in order to see if the good description of data persists and check theconvergence of the
EFT. This is in fact mandatory in view of the fact that the so called KSW approach [4, 5] also
produced a good description of data at NLO, but turned out to have a bad convergence in the
3S1 at N2LO [6, 7]. We will restrict ourselves to an energy rangeE such thatE ≪ mπ , the pion
mass, andp =

√
mNE ∼ mπ . Pion fields can then be integrated out leading to an EFT, which was

already described in [1], which we will call potential NNEFT (pNNEFT). For p ∼ mπ this EFT
will already be suitable to carry out the calculations of the amplitudes. Forp .

m2
π

Λχ
however it will

be convenient to integrated out nucleon fields withp∼ mπ and use the so called pionless NNEFT
(/πNNEFT). All matching calculations will be done expanding the low energy or momentum scales
in the integrals and using dimensional regularization to regulate any possible UV divergence and
minimal subtraction scheme. Local field redefinitions which respect the counting will be used to
get ride off redundant operators, rather than using the on-shell condition.

2. The nucleon-nucleon chiral effective theory with dibaryon fields

Our starting point is the effective theory for theNB=2 sector of QCD for energies much smaller
thanΛχ (about 2mN, mN being the nucleon mass) recently proposed in [1]. The distinct feature of
this EFT is that in addition to the usual degrees of freedom for a NNEFT theory, namely nucleons
and pions, two dibaryon fields, an isovector (Da

s) with quantum numbers1S0 and an isoscalar (~Dv)
with quantum numbers3S1 are also included. SincemN ∼ Λχ , a non-relativistic formulation of
the nucleon fields is convenient [8]. Chiral symmetry, and its breaking dueto the quark masses in
QCD, constrain the possible interactions of the nucleons and dibaryon fields with the pions. The
NB = 0 andNB = 1 sectors are the usual ones. We will need only the LO lagrangian in theNB = 0
sector and up to the NLO lagrangian in theNB = 1 sector.

The NB = 2 sector consist of terms with (local) two nucleon interactions, dibaryons and
dibaryon-nucleon interactions. The terms with two nucleon interactions can be removed by lo-
cal field redefinitions [9] and will not be further considered. The LO terms with dibaryon fields
and no nucleons in the rest frame of the dibaryons read,

LO(p) =
1
2

Tr
[

D†
s

(

−id0 +δ ′
ms

)

Ds

]

+~D†
v

(

−i∂0 +δ ′
mv

)

~Dv, (2.1)

whereDs = Da
sτa andδ ′

mi
, i = s,v are the dibaryon residual masses, which must be much smaller

than Λχ , otherwise the dibaryon should have been integrated out as the remaining resonances
have. The covariant derivative for the scalar (isovector) dibaryonfield is defined asd0Ds = ∂0Ds+
1
2[[u,∂0u],Ds]. The NLO pion-dibaryon lagrangian
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LO(p2) =s1Tr[Ds(uM
†u+u†

M u†)D†
s]+s2Tr[D†

s(uM
†u+u†

M u†)Ds]+

+s3Tr[D†
sDsu0u0]+s4Tr[D†

sDsuiui ]+s5Tr[D†
su0Dsu0]+s6Tr[D†

suiDsui ]+

+v1~D
†
v ·~DvTr[u†

M u† +uM
†u]+v2~D

†
v ·~DvTr[u0u0]+v3~D

†
v ·~DvTr[uiui ]+

+v4(D
i†D j +DiD j†)Tr[uiu j ],

(2.2)

si ∼ 1/Λχ , i = 1, ..,6 andv j , j = 1, ..,4 are low energy constants (LEC). The dibaryon-nucleon
interactions will also be needed at NLO. They read

L
(LO)
DN =

As√
2
(N†σ2τaτ2N∗)Ds,a +

As√
2
(N⊤σ2τ2τaN)D†

s,a+

+
Av√

2
(N†τ2~σσ2N∗) ·~Dv +

Av√
2
(N⊤τ2σ2~σN) ·~D†

v,

(2.3)

L
(NLO)
DN =

Bs√
2
(N†σ2τaτ2∇2N∗)Ds,a +

Bs√
2
(N⊤σ2τ2τa∇2N)D†

s,a +
Bv√

2
(N†τ2~σσ2∇2N∗) ·~Dv+

+
Bv√

2
(N⊤τ2σ2~σ∇2N) ·~D†

v +
B′

v√
2
(∇iN

†τ2σ iσ2∇ jN
∗)D j

v +
B′

v√
2
(∇iN

⊤τ2σ2σ i∇ jN)D j†
v ,

(2.4)

with As,Av ∼ Λ−1/2
χ , Bs,Bv,B′

v ∼ 1/Λχ .

3. Dibaryon propagator and counting

The tree level dibaryon propagator expressioni/(−E + δ ′
mi
− iη) gets an important contribu-

tion to the self-energy due to the interaction with the nucleons as discussed in [1]

i

−E +δ ′
mi

+ i A2
i mN p

π

i = s,v, (3.1)

which is always parametrically larger than the energyE. The size of the residual mass can be
extracted computing the LO amplitude using the propagator (3.1) and matching theresult to the
effective range expansion,

δ ′
mi
∼

1
πai

.
m2

π
Λχ

i = s,v. (3.2)

whereai are the scattering lengths of the1S0 and3S1 channels respectively. As a consequence the
full propagator can be expanded. Moreover equation (3.1) implies that the dibaryon field should
not be integrated out unlessp≪ δ ′

mi
, instead ofE ≪ δ ′

mi
as the tree level expression suggests. Since

δ ′
mi

.
m2

π
Λχ

, it should also be kept as an explicit degree of freedom in the so called/πNNEFT. The LO
expression for the dibaryon field propagator becomes forp∼ mπ (pNNEFT),

π
A2

i mN p
i = s,v, (3.3)
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(a) (b)

(c) (d)

Figure 1: (a) and (b) are orderO(m3/2
π /Λ3/2

χ ) contributions to the dibaryon residual mass. (a) These threediagrams sum up zero by
Wigner symmetry. (b) Wigner symmetry is violated by insertions of i(−E + δmi ). Naively we would expect these diagrams to be of

higher order,O(m5/2
π /Λ5/2

χ ), but the energy term is enhanced by the radiation pion up toO(m2
π/Λ2

χ ). Hence the cross in this diagram
stands only for an insertion of the energy. (c) OrderO(m2

π/Λ2
χ ) contributions to the dibaryon residual mass, only the diagrams with the

potential pion inside the radiation pion loop contribute. (d) N2LO contribution to the dibaryon-nucleon vertex.

and forp .
m2

π
Λχ

(/πNNEFT),

i

δ ′
mi

+ i A2
i mN p

π

i = s,v. (3.4)

The expanded terms will be taken into account through an effective vertex, which we will denote
with a cross in the dibaryon propagator. Higher order terms in this expansion will be equivalent
to multiple insertions of this vertex. Furthermore forp ≫ δ ′

mi
the LO Lagrangian becomes both

scale andSU(4) (spin-flavor Wigner symmetric) invariant, if the interactions with pions are ne-
glected [10]. Note also that the pNNEFT propagator is suppressed by amπ/Λχ factor respect to
the/πNNEFT propagator.

Except for the above mentioned contributions to the self-energy of the dibaryon fields, which
become LO, the calculation can be organized perturbatively in powers of 1/Λχ . Hence one expects
that any UV divergence arising in higher order calculations will be absorbed in a low energy con-
stant of a higher dimensional operator built out of nucleon, dibaryon and pion fields (note that the
linear divergence in the self-energy can be absorbed inδ ′

mi
).

4. Matching to pNNEFT

For energiesE∼m2
π/Λχ ≪mπ , the pion fields can be integrated out. This integration produces

nucleon-nucleon potentials and redefinitions of low energy constants. Wewill follow the strategy
of [11], which was inspired in the formalism developed in [12].

The dibaryon residual masses get contributions from (2.2) and higher loop diagrams involving
radiation pions, like the ones in fig.1b and fig.1c,

δms = δ ′
ms

+4mq(s1 +s2)+4A2
s
5
3

( g2
A

2 f 2
π

)2(mNmπ

4π

)3
+

( g2
A

2 f 2
π

)m3
π

8π
,

δmv = δ ′
mv

+4mqv1 +4A2
v
5
3

( g2
A

2 f 2
π

)2(mNmπ

4π

)3
+

( g2
A

2 f 2
π

)m3
π

8π
.

(4.1)

Note that because ofδ ′
mi

.
m2

π
Λχ

the quark mass dependence ofδmi is a leading order effect.

The dibaryon-nucleon vertices may in principle getO(m2
π/Λ2

χ) from a pion loop, but they turn
out to vanish, except for those which reduce to iterations of the OPE potential which will already
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LO N2LO

NLO

Figure 2: Diagrams contributing to the1S0 and3S1 partial wave amplitudes.

be included in the calculations in pNNEFT and must not be considered in the matching. There is
however a two loop contribution of this order involving radiation pions from the diagram in fig.1d.

Ai → Ai

(

1−4
g2

Am2
π

(4π fπ)2

)

. (4.2)

In theNB = 1 sector the nucleon mass is redefined by a factorδmN, however it can be reshuffled
into δmi by local field redefinitions. The dibaryon-nucleon interactions remain the same as in (2.3),
except for the values of theAi which get modified.

Finally, in theNB = 2 sector, two nucleon non-local interactions (potentials) due to the one
pion exchange are introduced. This is the well known one pion exchange(OPE) potential.

LNN =
1
2

∫

d3rN†σατρN(x1)Vαβ ;ρσ (x1−x2)N
†σβ τσ N(x2), (4.3)

with,

Vαβ ,ρσ (x1−x2) = −
g2

A

2 f 2
π

∫

d3q
(2π)3

qαqβ

~q2 +m2
π

δ ρσ e−i~q·(~x1−~x2). (4.4)

5. Matching to /πNNEFT

For p .
m2

π
Λχ

the calculation must be organized in a different way. This is very much facilitated
if we integrate out nucleon three momenta of the order ofmπ first, which leads to the so called
pionless nucleon-nucleon EFT. The Lagrangian of theNB = 1 sector of this theory remains the
same as in pNNEFT. For theNB = 2 sector the only formal difference from pNNEFT is that the
non-local potentials (4.3) become local and can be organized in powers of p2/m2

π . Diagrams in
Fig.2 containing one (or two) potential pion inside a nucleon bubble will contribute to the dibaryon
time derivative term as well as the dibaryon residual mass. Contributions to the dibaryon time
derivative can be reabsorbed by field redefinitions of dibaryon fields, while contributions to the
residual mass simply redefine it. The derivative and non-derivative dibaryon-nucleon vertex get
contributions from diagrams containing one (or two) potential pion in the dibaryon-nucleon vertex,
redefining the LECBi andAi . Analogous diagrams involving three potential pion, not shown in
this paper, will also analogously contribute to the matching. The OPE potential in(4.4) becomes
O(p2/m2

πΛ2
χ) and hence beyond N3LO in the p≪ mπ region.
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NLO

N2LO

Figure 3: Diagrams contributing to the mixing ampli-
tude.

NLO

N2LO

Figure 4: Diagrams contributing to the3D1 partial
wave amplitude.

As (Mev−1) δms (MeV)
p . m2

π/Λχ 0.0243 −1.51

p∼ mπ
NLO 0.0302 −2.25
N2LO 0.0251 −10.5

Table 1: Parameters for the1S0 channel.

Av (Mev−1) δmv (MeV) B′
v/Av (MeV−2)

p . m2
π/Λχ 0.0265 7.68

p∼ mπ
NLO 0.0359 13.4 12.4e−6
N2LO 0.0110 45.3

Table 2: Parameters for the3S1−3 D1 channel.

6. The1S0 channel

The 1S0 amplitude is computed from the diagrams in Fig.2 [3]. The phase shifts are plottedin
Fig.5 and Fig.6 and correspond in the 0-5MeV range to the/πNNEFT and in the 5-50MeV range
to pNNEFT. Parameters have been fit to phase shift data, in the 0-5MeV range in the case of the
/πNNEFT and to 5-20MeV range in the case of the pNNEFT. The reason behind the election to
fit the pNNEFT to the 5-20MeV data range instead of the more natural 5-50MeV data range is
that the former delivers a more smoother joining between the/πNNEFT and the pNNEFT curves.
Furthermore the convergence behavior is emphasized. Error bands correspond to the size of the
next order in the phase shift series.

Both As andδms receive N2LO corrections when matching from NNEFT to pNNEFT. If the
whole expressions forAs andδms were to be used in the N2LO amplitude, higher order terms will
be introduced. Therefore we will differentiate betweenδ NLO

ms
(ANLO

s ) andδ N2LO
ms

(AN2LO
s ) and we will

plug them inδ s,N2LO andδ s,NLO respectively. The values of this parameters have been obtained by
minimizing the sum of theχ2 functions associated toδ NLO andδ N2LO, with the errors given by the
size of the next order in the phase shift series (i.e(mπ/Λχ)2 and(mπ/Λχ)3 respectively).

The/πNNEFT amplitude expressions for N2LO (i.e. NLO in the pNNEFT counting) and N3LO
(i.e. N2LO in the pNNEFT) are formally identical, however theoretical errors are smaller in the
later. The only diagrams involved are the tree level one (LO) and the tree level with an insertion of
a cross (NLO and N2LO). The /πNNEFT phase shift have been fitted independently of pNNEFT.
Results for the1S0 channel parameters are summarized in Table 1.

7. The3S1-3D1 channel

The 3S1 amplitude is computed from the diagrams in Fig.2 [3], the mixing amplitude from the
diagrams in Fig.3, and the3D1 amplitude from the diagrams in Fig.4. The3S1 and3D1 phase shifts
are plotted in Fig.7, Fig.8 and Fig.10 respectively. The mixing angle is plotted in Fig.9. In this
section we analyze3S1-3D1 channel. We compare the3S1 and3D1 phase shifts to data as well as

6
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Figure 5: Plot of the NLO expression for the1S0 phase shift. The
blue line shows the Nijmegen data for the1S0 phase shift, while the
red line corresponds to the fit of our expression.
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Figure 6: Plot of the N2LO expression for the1S0 phase shift.
As in the previous figure the blue line shows the Nijmegen data for
the1S0 phase shift.
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Figure 7: Plot of the NLO expression for the3S1 phase shift. The
blue line shows the Nijmegen data for the3S1 phase shift, while the
red line corresponds to the fit of our expression.
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Figure 8: Plot of the N2LO expression for the3S1 phase shift.
The blue curve is the Nijmegen data for the3S1 phase shift, while
red line corresponds to our N2LO expression.
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Figure 9: Plot of the mixing angle. The blue line shows the Ni-
jmegen data, the green and red lines the NLO and N2LO expression
respectively.
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Figure 10: Plot of the3D1 phase shift. The blue line shows the
Nijmegen data, the green and red lines the NLO and N2LO expres-
sion respectively.

the mixing angle. The fitting procedure is analogous to the one used for the1S0 channel. However
in this channel we have minimized the sum of theχ2 functions associated toδ v,NLO andεN2LO

obtaining the values ofANLO
v ,δ NLO

mv
andB′

v/Av. If we add theχ2 function associated toδ v,N2LO the
minimization would not converge. HenceAN2LO

v andδ N2LO
mv

have been obtained in a separated fit
plugging in the values for the NLO parameters from the first fit.εNLO, δ 3D1,NLO and,δ 3D1,N2LO do
not contain free parameters. Theδ 3S1 plotted correspond in the 0-5MeV range to the/πNNEFT and
in the 5-50MeV range to pNNEFT, theδ 3D1 andε plotted correspond to pNNEFT in the whole
range. Results for the3S1-3D1 channel parameters are summarized in Table 2.

8. Conclusions

We have calculated the nucleon-nucleon scattering amplitudes for energiessmaller than the pion
mass in the1S0 and the3S1-3D1 channels at N2LO in a chiral effective field theory which contains
dibaryon fields as fundamental degrees of freedom. The large scattering lengths in the1S0 and
the 3S1 channels force the dibaryon residual masses to be much smaller than the pionmass. We
organize the calculation in a sequence of effective theories, which are obtained by sequentially in-
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tegrating out higher energy and momentum scales. We first integrate out energy scales of the order
of the pion mass. This leads to an effective theory with dibaryon and nucleon fields, pNNEFT. The
latter interact through potentials. For three momenta of the order of the pion mass, the scattering
amplitudes are calculated in this effective theory. For three momenta much smallerthan the pion
mass, it is convenient to further integrate out three momenta of the order of pion mass, which leads
to the so called pionless NNEFT, and carry out the calculations in the latter. Splitting the calcula-
tion in this way we can take advantage of the modern techniques of the threshold expansions and
dimensional regularization so that all integrals only depend on a single scale. There is no need to
introduce a PDS scheme. The technical complexity of the N2LO calculation is similar to the one
in the KSW scheme, but our final expressions are simpler [3]. The numerical results for the phase
shifts and mixing angle are also similar to the KSW ones. Hence a good description of the1S0

channel is obtained up to center of mass energies of about 35MeV., but for the3S1-3D1 channel our
results fail to describe data much before: for the3S1 phase shift and the mixing angle comparison
with data becomes bad beyond 15MeV., and for the3D1 phase shift it is never good. Particularly
worrying is the fact that for the3S1 and the3D1 phase shift the N2LO calculation compares worse
to data than the NLO one. The reasons of this failure can be traced back to the iteration of the OPE
potential, the first N2LO diagram in Fig.2, which gives a very large contribution.
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