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We make an improvement of the dispersion relation calculation of the quadratic scalar radius
of the pion,〈r2〉π

s , and the reactionγγ → π0π0. We solve a previous discrepancy between the
the solution of the Muskhelishvili-Omnès equations for thenon-strange null isospin(I) pion
scalar form factor and the Indurain’s calculation using an Omnès representation of this form
factor. We show that Ynduráin’s method is indeed compatiblewith the determinations from the
Muskhelishvili-Omnès equations once a possible zero in thescalar form factor is considered.
Once this is accounted for, the resulting value is〈r2〉π

s = 0.63±0.05 fm2.

Regarding the reactionγγ → π0π0 we emphasize how thef0(980) signal emerges inγγ → ππ
within the dispersive approach and how this fixes to a large extent the phase of the isoscalar S-

waveγγ → ππ amplitude above theKK̄ threshold. This allows us to make sharper predictions

for the cross section at lower energies and our results couldthen be used to distinguish between

different ππ isoscalar S-wave parameterizations with the advent of new precise data onγγ →
π0π0. We also pay special attention to the role played by theσ resonance inγγ → ππ and

calculate its coupling and width toγγ, for which we obtainΓ(σ → γγ) = (1.68±0.15) KeV.
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1. Introduction

In the present contribution we summarize the three papers [1, 2, 3] that mainly deal with the
strong influence of theI = 0 S-wave meson-meson final state interactions in the non-strangeI = 0
scalar form factor of the pion [1] andγγ → π0π0 [2]. Both processes can be formulated in a
way that share in common the same basic function in order to take care of the strong final state
interactions in theI = 0 S-wave. This function has been recently the origin of largeuncertainties
in its implementation in the literature, both for the scalarform factor of the pion [4, 5, 6] and for
γγ → π0π0 [7].

Performing a Taylor expansion aroundt = 0 of the scalar form factor of the pion,Γπ(t),
Γπ(t) = Γπ(0)

{

1+ 1
6t〈r2〉π

s +O(t2)
}

, the coeffcient of the linear term defines the quadratic scalar
radius of the pion,〈r2〉π

s . The quantity〈r2〉π
s contributes around 10% to the values of the S-waveππ

scattering lengths as determined in Ref. [8] by solving the Roy equations with constraints from two
loop Chiral Perturbation Theory (CHPT). Related to that,〈r2〉π

s is also important inSU(2)×SU(2)

CHPT since it gives the low energy constantℓ̄4 that controls the departure ofFπ from its value in
the chiral limit [9, 10] at next-to-leading order. Based on one loopχPT, Gasser and Leutwyler
[9] obtained〈r2〉π

s = 0.55±0.15 fm2. This calculation was improved later on by the same authors
together with Donoghue [11], who solved the corresponding Muskhelishvili-Omnès equations with
the coupled channels ofππ andKK̄. The update of this calculation, performed in Ref. [8], gives
〈r2〉π

s = 0.61±0.04 fm2. One should notice that solutions of the Muskhelishvili-Omnès equations
for the scalar form factor consider only two coupled channels (ππ, KK) and have systematic un-
certainties, specially for energies between 1-1.5 GeV coming from the not consideration of the 4π,
6π, 2η andηη ′ states. Furthermore it relies on non-measured T-matrix elements or on assump-
tions about which are the channels that matter. Therefore, other independent approaches are then
required. In this respect we quote the works [12, 13, 14], andYnduráin’s ones [4, 5, 6]. These latter
works have challenged the previous value for〈r2〉π

s , shifting it to the larger〈r2〉π
s = 0.75±0.07 fm2.

If this is translated to the scattering lengths, it implies ashift of slightly more than one sigma.
Refs. [4, 5] emphasize that one should have a precise knowledge of theI = 0 S-wave phase shits,
δ0(s), for s≥ 4M2

K GeV2, MK is the kaon mass, to disentangle which of the values, either that
of Ref. [8] or [4], is the right one. However, this point is based on an unstable behaviour of the
solution of Ref. [4] with respect to the value ofδ0(4M2

K). Once this instability is cured, as shown
below, the resulting〈r2〉π

s only depends weakly onδ0(s), s≥ 4M2
K , and is compatible with the value

of Ref. [8].

Regarding the reactionγγ → π0π0 one has to emphasize that due to the absence of the Born
term (since theπ0 is neutral), this reaction is specially sensitive to final state interactions. For
energies below 0.6 GeV or so, only the S-waves matter, which haveI = 0 or 2. It is in this point
where both the study of this reaction and the scalar form factor match. Recently, Ref. [7] updated
the dispersive approach of Ref. [15] to calculateσ(γγ → π0π0). Here one finds a large uncertainty
in the results for

√
s≥ 0.5 GeV that at around 0.6 GeV is already almost 200%. This is dueto the

lack of a precise knowledge of the phase of theγγ → ππ I = 0 S-wave amplitude above 4m2
K . We

showed in Refs. [2, 3] that one can largely remove the sensitivity for lower energies,
√

s. 0.8 GeV,
on the uncertainty in the not precisely known phase of theI = 0 S-waveγγ → ππ amplitude above
theKK̄ threshold. The novelty was to include a further subtractionin the dispersion relation for the
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I = 0 S-waveγγ → ππ, together with an extra constraint to fix the additional subtraction constant.
This was motivated by the use of an improvedI = 0 S-wave Omnès function. In Ref. [2, 3] it
is discussed in detail how thef0(980) peak, clearly seen recently inγγ → π+π− [16], can be
generated within the dispersive method. As a result, the remaining ambiguity in this phase byπ
in ref.[2] is removed and this allows to sharpen the prediction of theγγ → π0π0 cross section for√

s. 0.8 GeV, up to the onset of D-waves, as compared with ref.[2]. This could then be used to
constraint further different parameterizations of the lowenergyππ I = 0 S-wave.

2. The scalar form factor of the pion

Ref.[4] makes use of an Omnès representation for the pion scalar form factor,

Γπ(t) = P(t)exp

[

t
π

∫ ∞

4M2
π

ds′
φ0(s′)

s′(s′− t − iε)

]

. (2.1)

Here,P(t) is a polynomial int normalized such thatP(0) = Γπ(0) and whose zeroes are those
of Γπ(t). On the other hand,φ0(t) is the continuous phase ofΓπ(t)/P(t). Refs. [4, 5] make an
assumption that is not always necessarily fulfilled. Namely, to identify φ0(t) with the phase of
Γπ(t), that we denote in the following asρ(t). If this identification is done it follows thatP(t) must
be a constant. One must be aware that in Eq. (2.1)φ0(t) is the phase ofΓπ(t)/P(t). Notice that
the phase ofΓπ(t) is not continuous when crossing a zero located att1 ∈ R, since there is a flip in
the sign when passing through. However, the phase ofΓπ(t)/P(t) is continuous, since the zero is
removed. This is the phase one should use in the Omnès representation, Eq. (2.1), because it results
from a dispersion relation of logΓπ(t)/P(t), and thenφ(t) must be continuous (but not necessarily
ρ(t)).

As stated, Ref. [4] tookΓπ(t) = Γπ(0)exp
[

t
π

∫ ∞
4M2

π
ds′ ρ(s′)

s′(s′−t−iε)

]

. So that the scalar form factor

is given by,〈r2〉π
s = 6

π
∫ +∞

4M2
π

ρ(s)
s2 ds. The phaseρ(s) is fixed in Refs. [4, 5] by invoking Watson’s final

state theorem. Fors< sK , sK = 4M2
K , it implies thatρ(s) = δ0(s), where neglecting inelasticity due

to multipion states, an experimental fact. For 1.42>
√

s& 1.1 GeV, Ref. [4] stressed the interesting
fact that experimentally the inelasticity turns out to be small and hence Watson’s final state theorem
can be applied approximately again. In the narrow region between 2MK and 1.1 GeV inelasticity
cannot be neglected but Ref. [4] argues that, as it is so narrow, its contribution to Eq. (2) is small
anyhow and, furthermore, that the elasticity parameterη is not so small, so that one could still
apply Watson’s final state theorem with corrections. Finally, for s> s0 = 2 GeV2 Ref. [4] takes a
linear extrapolation fromδ0(s0) to π. One should here criticize that it is still a long way to run from
values ofδ0(s0) . 2π up toπ ats→ +∞. With all these ingredients, and some error estimates, the
value〈r2〉π

s = 0.75±0.07 fm2 results [4, 5].
The steps performed in Ref. [4] are not always compatible. InRef. [1] we took as granted the

assumption that Watson’s final state theorem can be approximately applied for 1.5 GeV>
√

s >

2MK . Our assumption is in agreement with any explicit calculation of the pion non-strangeI = 0
scalar form factor. Now, Watson’s final state theorem implies thatφ(s) = ϕ(s) (moduloπ), with
ϕ(s) the phase of theI = 0 S-waveππ amplitude,tππ = (ηe2iδ0 −1)/2i. It occurs, as stressed in
Refs. [17, 5], thatϕ(s) can be either∼ δ0(s) or ∼ δ0(s)−π depending on whetherδ0(sK) > π or
< π, respectively, forsK < s< 2 GeV2. The latter case corresponds to the calculation in Ref. [8],
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while the former is the preferred one in Ref. [5] and arguments are put forward for this preference in
this reference. Let us evolve continuously from one situation (δ0(sK) < π) to the other (δ0(sK) > π).
In the first caseϕ(s) has an abrupt drop fors> sK simply because thenη < 1 and while the real
part of tππ rapidly changes sign, its imaginary part is positive (> 0). The rapid movement in the
real part is due to the swift one inδ0(s) in the KK̄ threshold due to thef0(980) resonance. As a
result fors. sK , ϕ(s) = δ0(s) ≃ π and fors& sK thenϕ(s) < π/2. This rapid movement gives
rise to a rapid drop in the Omnés function, Eq. (2), so that themodulus of the form factor has
a deep minimum aroundsK . Here, one is using Watson’s final state theorem withφ0(s) = ϕ(s)
and the form factor of Ref. [11] is reproduced. Notice as wellthat in this case the functionφ(s)
approachesπ from below for asymptotics and thenP(t) = Γ0(0) in Eq. (2.1). Now, we consider
the limit δ0(s) → π− for s→ s−K . The superscript−(+) indicates that the limit is approached from
below(above). In the limit, the change in sign in the real part of tππ occurs precisely atsK , so that
for s= s−K , ϕ(s) = π and fors= s+

K thenϕ(s) < π/2. As a result one has a drop by−π in ϕ(s)
which gives rise to a zero in the Omnès representation of the scalar form factor. Thus, the deep
has evolved to a zero whenδ0(sK) → π−. Because of this zero the proper Omnès representation
now involves aP(t) = Γπ(0)(1− t/sK) and φ(s) is no longerϕ(s) but ≃ ϕ(s) + π ≃ δ0(s) for
2.25 GeV2 > s > sK . This follows simply becauseφ(s) is continuous. Thus, we go into a new
realm whereφ(s) ≃ δ0(s) and the degree ofP(t) is 1, so thatΓπ(t) has a zero at the points1 where
δ0(s1) = π ands1 < sK . Note that only ats1 the imaginary part ofΓπ(t) is zero and this fixes the
position of the zero [1].

Hence forδ0(sK) ≥ π one has to use

Γπ(t) = Γπ(0)

(

1− t
sK

)

exp

[

t
π

∫ ∞

4M2
π

ds′
φ(s′)

s′(s′− t − iε)

]

, (2.2)

with φ(s) ≃ δ0(s) for s < 2.25 GeV2. The uncertainties in this approximation fors > sK are
discussed in Ref. [1] and included in the final error in〈r2〉π

s .
Our final result is

〈r2〉π
s = 0.63±0.05 fm2. (2.3)

The error takes into account differentππ I = 0 S-wave parameterizations, namely those of Refs. [8]
and [18], the error in the application of Watson’s final statetheorem above 1 GeV and up to 1.5 GeV,
and the uncertainties inφ(s) given by asymptotic QCD fors> 2.25 GeV2. This value is compatible
with that of Ref. [8],〈r2〉π

s = 0.61±0.04 fm2, and also with〈r2〉π
s = 0.64±0.06 fm2 of Ref. [13]

calculated from Unitary CHPT.

3. γγ → ππ

In this section we report on the results of refs.[2, 3], wherea more detailed account can be
found. Let us consider the S-wave amplitudeγγ → (ππ)I , FI(s), where the two pions have definite
I = 0 or 2. The functionFI (s) on the complexs−plane is analytic except for two cuts along the real
s−axis, the unitarity one fors≥ 4m2

π and the left hand cut fors≤ 0, with mπ the pion mass. Let us
denote byLI(s) the complete left hand cut contribution toFI (s). Then, the functionFI(s)−LI (s),
by construction, has only right hand cut. LetφI (s) be the phase ofFI(s) modulo π, chosen in
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such a way thatφI (s) is continuousandφI (4m2
π) = 0. For the exoticI = 2 S-wave one can invoke

Watson’s final state theorem#1 so thatφ2(s) = δπ(s)2. For I = 0 the same theorem guarantees that
φ0(s) = δπ(s)0 for s≤ 4m2

K , where we denote byδπ(s)I the isospinI S-waveππ phase shifts. Here
one neglects the inelasticity due to the 4π and 6π states below the two kaon threshold. Above the
two kaon thresholdsK = 4m2

K , the phase functionφ0(s) cannot be fixeda priori due the onset of
inelasticity. However, as remarked in refs.[4, 1], inelasticity is again small for

√
s& 1.1 GeV , and

one can then apply approximately Watson’s final state theorem which implies thatφ0(s) ≃ δ (+)(s)
modulo π. Hereδ (+)(s) is the eigenphase of theππ, KK̄ I = 0 S-wave S-matrix such that it is
continuous andδ (+)(sK) = δπ(sK)0. In refs.[5, 1] it is shown thatδ (+)(s) ≃ δπ(s)0 or δπ(s)0−π,
depending on whetherδπ(sK)0 ≥ π or < π, respectively. In order to fix the integer factor in front
of π in the relationφ0(s) ≃ δ (+)(s) moduloπ, it is necessary to follow the possible trajectories of
φ0(s) in the narrow region 1.

√
s. 1.1 GeV. The remarkable physical effects happening there

are the appearance of thef0(980) resonance on top of theKK̄ threshold and the cusp effect of the
latter that induces a discontinuity atsK in the derivative of observables. Between 1.05 to 1.1 GeV
there are no further narrow structures and observables evolve smoothly. Approximately half of
the region between 0.95 and 1.05 GeV is elastic andφ0(s) = δπ(s)0 (Watson’s theorem), so that it
raises rapidly. Above 2mK ≃ 1 GeV and up to 1.05 GeV the functionφ0(s) can keep increasing
with energy, likeδπ(s)0. The other possibility is a change of sign in the slope atsK due to the
KK̄ cusp effect such thatφ0(s) starts a rapid decrease in energy. Above

√
s = 1.05 GeV,φ0(s)

matches smoothly with the behaviour for
√

s& 1.1 GeV, which is constraint by Watson’s final state
theorem. As a result, for

√
s& 1 GeVeither φ0(s) ≃ δπ(s)0 or φ0(s) ≃ δπ(s)−π, corresponding

to an increasing or decreasingφ0(s) abovesK , in order.
Let us define the switchz to characterize the behaviour ofφ0(s) for s> sK , and close tosK ,

such thatz= +1 if φ0(s) rises with energy andz= −1 if it decreases. Lets1 be the value ofs at
which φ0(s1) = π. Following ref.[1] we introduce the Omnès function,

Ω0(s) =

(

1−θ(z)
s
s1

)

exp

[

s
π

∫ ∞

4m2
π

φ0(s′)
s′(s′−s)

ds′
]

, (3.1)

with θ(z) = 1 for z= +1 and 0 forz= −1. Given the definition of the phase functionφI (s) the
functionFI(s)/ΩI (s) has no right hand cut. Next, we perform a twice subtracted dispersion relation
for (F0(s)−L0(s))/Ω0(s)

F0(s) = L0(s)+c0sΩ0(s)+
s2

π
Ω0(s)

∫ ∞

4m2
π

L0(s′)sinφ̄0(s′)

s′2(s′−s)|Ω0(s′)|
ds′ + θ(z)

ω0(s)
ω0(s1)

s2

s2
1

(F0(s1)−L0(s1)) ,

(3.2)
whereω0(s) = exp

[

s
π

∫ ∞
4m2

π

φ0(s′)
s′(s′−s)ds′

]

. In the previous equation we introducēφ0(s) that is defined

as the phase ofΩ0(s). Proceeding similarly forI = 2 one has

F2(s) = L2(s)+cI sΩ2(s)+
s2

π
Ω2(s)

∫ ∞

4m2
π

L2(s′)sinφ2(s′)

s′2(s′−s)|Ω2(s′)|
ds′ . (3.3)

It is worth mentioning that eq.(3.2) forI = 0 andz = +1 is equivalent to perform a three
times subtracted dispersion relation for(F0(s)−L0(s))/ω0(s). Let us denote byFN(s) the S-wave

#1This theorem implies that the phase ofFI (s) when there is no inelasticity is the same, moduloπ, as the one of the
isospinI S-waveππ elastic strong amplitude.
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Figure 1: Final result for theγγ → π0π0 cross for
√

s≤ 1.05 GeV. The experimental data are from the
Crystal Ball Collaboration [20].

γγ → π0π0 amplitude and byFC(s) the γγ → π+π− one. We are still left with the unknown
subtraction constantsc0, c2 for I = 0 and 2, respectively, andF0(s1)−L0(s1) for I = 0 andz= +1.
The c0, c2, constants can be obtained from low energy theorems and matching to one loopχPT.
The value ofF0(s1)−L0(s1) can be restricted because the cross sectionσ(γγ → π0π0) around the
f0(980) resonance is quite sensitive to this constant. We impose that σ(γγ → π0π0) ≤ 40 nb at
s1. This upper bound for the peak of thef0(980) in γγ → π0π0 is equivalent to impose that theγγ
width of the f0(980) lies in the range 205+95

−83(stat)+147
−117(sys) eV as determined in ref.[16]. We shall

see that the effect of this rather large uncertainty allowedat 1 GeV, see fig.1, is very mild at lower
energies. As thef0(980) resonance gives rise to a smallpeakin the precise data onγγ → π+π−

[16], thenφ0(s) must increase with energy abovesK and the case withz= +1 is the one realized in
nature. Note that forz=−1 in eq.(3.2), there is no a local maximum associated with this resonance
in |F0(s)| but a minimum, because|ω0(s)| has a dip around thef0(980) mass.

The source of uncertainty in the approximate relationφ0(s)≃ δπ(s)0 for 4m2
K .

√
s. 1.5 GeV

and its functional dependence fors> sH = 2.25 GeV2 is estimated similarly as in ref.[3, 1]. In fig.1
we show our final results for theγγ → π0π0, where the band around each line corresponds to the
estimated error. The error band for the dot-dashed line is not shown because it is similar to the ones
of the other two curves. In this figure PY refers to using theI = 0 S-waveππ of ref.[18], CGL that
of ref.[8] and AO the one of ref.[19]. One observes that for

√
s. 0.8 GeV the uncertainty in the

loose bound for thef0(980) greatly disappears. For such energies the main source of uncertainty
originates from the uncertainties in theππ phase parameterizations used.

The previous model allows dor an evaluation of theσ → γγ width. The couplingσ → γγ ,
gσγγ , can be evaluated from the residue of the amplitudeFN(s) at the second Riemann sheet. It can
be easily obtained that

g2
σγγ

g2
σππ

= −1
2

(

σπ(sσ )

8π

)2

F0(sσ )2 , (3.4)

wheregσππ is the coupling of theσ to ππ.

We denote bysσ = (Mσ − i Γσ/2)2. Ref.[21] providesMCCL
σ = 441+16

−8 MeV and ΓCCL
σ =

544+18
−25 MeV, while from ref.[19] one hasMAO

σ = (456±6) MeV andΓAO
σ = (482±20) MeV. In
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the following the superscriptsAO andCCL refer to those results obtained by employingsσ from
ref.[19] or [21], respectively. From eq.(3.4) we obtain|gσγγ/gσππ | = 2.01± 0.11 for sCCL

σ and
1.85±0.09 for sAO

σ . Givensσ , this ratio of residua is the well defined prediction that follow from
our F0(s). We employ the standard narrow resonance width formula in terms ofgσγγ to calculate

Γ(σ → γγ) =
|gσγγ |2
16πMσ

. One needs to provide numbers for|gσππ | in order to apply the previous
equation and the determined|gσγγ/gσππ |. We first consider the value|gAO

σππ | = (3.17±0.10) GeV
from the approach of ref.[19]. The calculated width isΓAO(σ → ππ) = (1.50± 0.18) KeV. Not
only the position of the pole in the partial wave amplitude, but also its residue can be calculated
in the framework of the dispersive analysis described in ref.[21]. Expressed in terms of the com-
plex coefficientgσππ , the preliminary result for the residue amounts to|gCCL

σππ | = (3.31+0.17
−0.08) GeV,

ΓCCL(σ → γγ) = (1.98+0.30
−0.24) KeV. Taking the average between these two values forΓ(σ → γγ)

we end with,
Γ(σ → γγ) = (1.68±0.15) KeV . (3.5)
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