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We make an improvement of the dispersion relation calaatif the quadratic scalar radius
of the pion, (r?)Z, and the reactioryy — n°m®. We solve a previous discrepancy between the
the solution of the Muskhelishvili-Omnes equations for tien-strange null isospifl) pion
scalar form factor and the Indurain’s calculation using anr@s representation of this form
factor. We show that Yndurain’s method is indeed compatisth the determinations from the
Muskhelishvili-Omnés equations once a possible zero insttedar form factor is considered.
Once this is accounted for, the resulting valug I = 0.63+ 0.05 frr?.

Regarding the reactiopy — n°m® we emphasize how th&(980) signal emerges ityy — 7t
within the dispersive approach and how this fixes to a largergxthe phase of the isoscalar S-
wave yy — 1T amplitude above th&K threshold. This allows us to make sharper predictions
for the cross section at lower energies and our results dbeld be used to distinguish between
different rrrt isoscalar S-wave parameterizations with the advent of newise data oryy —
mr®. We also pay special attention to the role played by ¢heesonance iryy — it and
calculate its coupling and width tgy, for which we obtail (g — yy) = (1.68+ 0.15) KeV.
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1. Introduction

In the present contribution we summarize the three paper, ] that mainly deal with the
strong influence of the = 0 S-wave meson-meson final state interactions in the nanggt = 0
scalar form factor of the pion [1] angy — m°m° [2]. Both processes can be formulated in a
way that share in common the same basic function in orderke ¢are of the strong final state
interactions in thé = 0 S-wave. This function has been recently the origin of lamyeertainties
in its implementation in the literature, both for the scdt@m factor of the pion [4, 5, 6] and for
yy — 1P [7].

Performing a Taylor expansion arouhd= 0 of the scalar form factor of the piom,,(t),

Cr(t) =Tx(0) {1+ %t(r2>§+ 0(t?)} , the coeffcient of the linear term defines the quadratic scala
radius of the pion{r?)Z. The quantity(r?)Z contributes around 10% to the values of the S-weaxe
scattering lengths as determined in Ref. [8] by solving thg &juations with constraints from two
loop Chiral Perturbation Theory (CHPT). Related to tied) X is also important irBU(2) x SU(2)
CHPT since it gives the low energy constdpthat controls the departure Bf; from its value in
the chiral limit [9, 10] at next-to-leading order. Based aredoop xPT, Gasser and Leutwyler
[9] obtained(r?)I = 0.55+ 0.15 f?. This calculation was improved later on by the same authors
together with Donoghue [11], who solved the correspondinghitelishvili-Omnés equations with
the coupled channels afr andKK. The update of this calculation, performed in Ref. [8], give
(r>)I' = 0.6140.04 f?. One should notice that solutions of the Muskhelishvili-@¥s equations
for the scalar form factor consider only two coupled chasirigit, KK) and have systematic un-
certainties, specially for energies between 1-1.5 GeV ngrfriom the not consideration of ther4
61T, 2n andnn’ states. Furthermore it relies on non-measured T-matrixefds or on assump-
tions about which are the channels that matter. Therefdner aindependent approaches are then
required. In this respect we quote the works [12, 13, 14],Yamdurain’s ones [4, 5, 6]. These latter
works have challenged the previous value(f@)Z, shifting it to the largefr?)T = 0.75+0.07 f?.
If this is translated to the scattering lengths, it implieshét of slightly more than one sigma.
Refs. [4, 5] emphasize that one should have a precise knge/lefithel = 0 S-wave phase shits,
X(s), for s> 4M}% Ge\Z, Mk is the kaon mass, to disentangle which of the values, eitfadr t
of Ref. [8] or [4], is the right one. However, this point is lkadson an unstable behaviour of the
solution of Ref. [4] with respect to the value &f(4M2). Once this instability is cured, as shown
below, the resultin@r2>;T only depends weakly ody(s), s> 4M,%, and is compatible with the value
of Ref. [8].

Regarding the reactiopy — 1°1° one has to emphasize that due to the absence of the Born
term (since the® is neutral), this reaction is specially sensitive to finaltstinteractions. For
energies below 0.6 GeV or so, only the S-waves matter, whasle h= 0 or 2. It is in this point
where both the study of this reaction and the scalar fornofaoiatch. Recently, Ref. [7] updated
the dispersive approach of Ref. [15] to calculatgyy — n°1i°). Here one finds a large uncertainty
in the results for/s > 0.5 GeV that at around 0.6 GeV is already almost 200%. This isaltee
lack of a precise knowledge of the phase of fiye— it | = 0 S-wave amplitude aboven§. We
showed in Refs. [2, 3] that one can largely remove the seitgifor lower energies,/s < 0.8 GeV,
on the uncertainty in the not precisely known phase of thed S-waveyy — T amplitude above
theKK threshold. The novelty was to include a further subtraciticthe dispersion relation for the
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| = 0 S-waveyy — 1, together with an extra constraint to fix the additional satiion constant.
This was motivated by the use of an improved: 0 S-wave Omnes function. In Ref. [2, 3] it
is discussed in detail how th&(980) peak, clearly seen recently yy — " [16], can be
generated within the dispersive method. As a result, thaiing ambiguity in this phase by
in ref.[2] is removed and this allows to sharpen the preoiictf theyy — n°n°® cross section for
/< 0.8 GeV, up to the onset of D-waves, as compared with ref.[2]s Tbuld then be used to
constraint further different parameterizations of the Evergyrrt| = 0 S-wave.

2. Thescalar form factor of the pion

Ref.[4] makes use of an Omneés representation for the pidardcam factor,

®(s)

Fn(t):P(t)exp{%Azzdém . 2.1)

Here, P(t) is a polynomial int normalized such tha®(0) = I' (0) and whose zeroes are those
of M(t). On the other handp(t) is the continuous phase ©f;(t)/P(t). Refs. [4, 5] make an
assumption that is not always necessarily fulfilled. Nameyidentify ¢(t) with the phase of

I (1), that we denote in the following gxt). If this identification is done it follows tha®(t) must

be a constant. One must be aware that in Eq. (&) is the phase of ;(t)/P(t). Notice that
the phase of ;(t) is not continuous when crossing a zero locate atRR, since there is a flip in
the sign when passing through. However, the phade,(f) /P(t) is continuous, since the zero is
removed. This is the phase one should use in the Omneés retatse, Eq. (2.1), because it results
from a dispersion relation of Idg.(t)/P(t), and thenp(t) must be continuous (but not necessarily
p(1)).

As stated, Ref. [4] tooK (t) =T (0) exp }—Tfjﬁ,l%dés,(sf’_(ifzw) . So that the scalar form factor

is given by,(r?)I = % J,TTZT @ds. The phase(s) is fixed in Refs. [4, 5] by invoking Watson'’s final
state theorem. Far< s¢, s« = 4MZ, it implies thatp(s) = &(s), where neglecting inelasticity due
to multipion states, an experimental fact. Fat2> /s> 1.1 GeV, Ref. [4] stressed the interesting
fact that experimentally the inelasticity turns out to beairand hence Watson'’s final state theorem
can be applied approximately again. In the narrow regiowéeh My and 1.1 GeV inelasticity
cannot be neglected but Ref. [4] argues that, as it is sowait®contribution to Eq. (2) is small
anyhow and, furthermore, that the elasticity parametés not so small, so that one could still
apply Watson’s final state theorem with corrections. Finddir s > sp = 2 Ge\® Ref. [4] takes a
linear extrapolation frondy(Sy) to 7. One should here criticize that it is still a long way to ruorfr
values ofdy(s) < 2rmup tomats — 4. With all these ingredients, and some error estimates, the
value (r?)If = 0.754 0.07 fn? results [4, 5].

The steps performed in Ref. [4] are not always compatibldréh [1] we took as granted the
assumption that Watson’s final state theorem can be appabsiynapplied for 15 GeV> /s >
2Mg. Our assumption is in agreement with any explicit calcatatf the pion non-strangle= 0
scalar form factor. Now, Watson'’s final state theorem ingptleatg(s) = ¢ (s) (modulo 1), with
¢ (s) the phase of thé = 0 S-wavertit amplitude,t,; = (n€?% — 1) /2i. It occurs, as stressed in
Refs. [17, 5], thatp (s) can be either dy(s) or ~ dy(S) — T depending on whethe¥(s«) > mor
< m, respectively, folsx < s< 2 Ge\?. The latter case corresponds to the calculation in Ref. [8],
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while the former is the preferred one in Ref. [5] and argursené put forward for this preference in
this reference. Let us evolve continuously from one situa{dy (s ) < 1) to the other §(s«) > ).
In the first casep (s) has an abrupt drop far> s¢ simply because then < 1 and while the real
part oft,;; rapidly changes sign, its imaginary part is positive®). The rapid movement in the
real part is due to the swift one By(s) in the KK threshold due to thdy(980) resonance. As a
result fors < s, ¢(s) = &(s) ~ mand fors > s¢ then¢(s) < /2. This rapid movement gives
rise to a rapid drop in the Omnés function, Eqg. (2), so thatntteelulus of the form factor has
a deep minimum arounsk. Here, one is using Watson’s final state theorem wgfs) = ¢(s)
and the form factor of Ref. [11] is reproduced. Notice as whlt in this case the functiog(s)
approachest from below for asymptotis and thenP(t) = 'p(0) in Eq. (2.1). Now, we consider
the limit &(s) — m for s— s¢. The superscript-(+) indicates that the limit is approached from
below(above). In the limit, the change in sign in the reat pét;; occurs precisely a, so that
for s=s¢, ¢(s) = mand fors= s{ then¢(s) < 11/2. As a result one has a drop byrin ¢(s)
which gives rise to a zero in the Omneés representation ofdhkusform factor. Thus, the deep
has evolved to a zero whel(s<) — 1. Because of this zero the proper Omneés representation
now involves aP(t) = I z(0)(1—t/s«) and ¢(s) is no longerg(s) but ~ ¢(s) + 1~ &(s) for
2.25 GeV? > s> s¢. This follows simply because(s) is continuous. Thus, we go into a new
realm wherep(s) ~ d(s) and the degree d¥(t) is 1, so thal (t) has a zero at the poist where
d(s1) = mands; < sx. Note that only at; the imaginary part of (t) is zero and this fixes the
position of the zero [1].

Hence fordy(s«) > mmone has to use

t tre @(s)
Mty =T 1—— — T 2.2
o) =) (1o Jexp| - [ as PO (2.2)
with @(s) ~ &(s) for s < 2.25 Ge\?. The uncertainties in this approximation fer- s« are
discussed in Ref. [1] and included in the final errofiA) 7.
Our final result is
(rI' = 0.63+0.05 fr?. (2.3)

The error takes into account differemtr| = 0 S-wave parameterizations, namely those of Refs. [8]
and [18], the error in the application of Watson'’s final stagorem above 1 GeV and up to 1.5 GeV,
and the uncertainties ip(s) given by asymptotic QCD fa> 2.25 Ge\2. This value is compatible
with that of Ref. [8],(r?)I = 0.61+ 0.04 fn?, and also with(r?)T = 0.64+ 0.06 f? of Ref. [13]
calculated from Unitary CHPT.

3. yy—nn

In this section we report on the results of refs.[2, 3], whemmore detailed account can be
found. Let us consider the S-wave amplituge— (7171);, F (S), where the two pions have definite
| =0 or 2. The functiori (s) on the complex—plane is analytic except for two cuts along the real
s—axis, the unitarity one fog > 4m?T and the left hand cut fa < 0, with m;; the pion mass. Let us
denote byl (s) the complete left hand cut contribution Fg(s). Then, the functior (s) — L (),
by construction, has only right hand cut. L@ts) be the phase of(s) modulo 11, chosen in
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such a way thaty (s) is continuousand @ (4m?) = 0. For the exotid = 2 S-wave one can invoke
Watson’s final state theoréso thatg(s) = dx(s)2. Forl = 0 the same theorem guarantees that
@(S) = dn(S)o for s< 4mZ, where we denote b§(s), the isospin S-wavertrt phase shifts. Here
one neglects the inelasticity due to the dnd 67 states below the two kaon threshold. Above the
two kaon thresholdyx = 4mZ, the phase functiogy(s) cannot be fixed priori due the onset of
inelasticity. However, as remarked in refs.[4, 1], inalast is again small for,/s> 1.1 GeV , and
one can then apply approximately Watson’s final state tmeavaich implies thatg(s) ~ 6(+)(s)
modulo 7. Hered(*)(s) is the eigenphase of therm, KK | = 0 S-wave S-matrix such that it is
continuous and*)(s¢) = &x(sk)o. In refs.[5, 1] it is shown thad(+)(s) ~ &(S)o Or dr(S)o — T,
depending on whethe¥;(s«)o > 1 or < 11, respectively. In order to fix the integer factor in front
of 1in the relationgy(s) ~ 6(*)(s) modulo, it is necessary to follow the possible trajectories of
@(s) in the narrow region 1< /s < 1.1 GeV. The remarkable physical effects happening there
are the appearance of tlig(980) resonance on top of tHeK threshold and the cusp effect of the
latter that induces a discontinuity st in the derivative of observables. Between 1.05to 1.1 GeV
there are no further narrow structures and observablevesgohoothly. Approximately half of
the region between 0.95 and 1.05 GeV is elastic @yid) = d,(S)o (Watson’s theorem), so that it
raises rapidly. Abover®x ~ 1 GeV and up to 1.05 GeV the functiam(s) can keep increasing
with energy, likedx(s)o. The other possibility is a change of sign in the slopegatiue to the
KK cusp effect such thapy(s) starts a rapid decrease in energy. Abgye= 1.05 GeV, @(s)
matches smoothly with the behaviour fgs > 1.1 GeV, which is constraint by Watson’s final state
theorem. As a result, foy/s > 1 GeV either gy(s) ~ d,(S)o Or @(S) ~ dx(s) — 1, corresponding
to an increasing or decreasig(s) abovesg, in order.

Let us define the switck to characterize the behaviour @f(s) for s > s¢, and close tcs,
such thatz = +1 if @(s) rises with energy and= —1 if it decreases. Ley be the value of at
which @(s;) = 1. Following ref.[1] we introduce the Omnés function,

Qo(s) = <l—9(z)§> epr/w (g(f)s)dg] , (3.1)

T Jame S

with 8(z) = 1 forz= +1 and 0 forz= —1. Given the definition of the phase functign(s) the
functionF (s)/Q (s) has no right hand cut. Next, we perform a twice subtracteukdsson relation

for (Fo(s) — Lo(S))/Q0(s)

- & © Lo(<)singy(s) w(s) & ~
Fo(S) = LofS) +c0s0(8) + 7 Q0(8) [, v 0 s+ 00 L S (ol '—0(3(1;)27)
wherea(s) = exp[,—ifjfr% %dg]. In the previous equation we introdugg(s) that is defined
as the phase d®y(s). Proceeding similarly fof = 2 one has
_ o [0 LaE)sing()
Fa(8) = La(9) +15Q2(8) + - 0a(9) A I (3.3)

It is worth mentioning that eq.(3.2) fdr= 0 andz = +1 is equivalent to perform a three
times subtracted dispersion relation {&%(s) — Lo(S))/an(S). Let us denote by (s) the S-wave

#1This theorem implies that the phaseFpfs) when there is no inelasticity is the same, modmas the one of the
isospinl S-wavertr elastic strong amplitude.
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Figure 1: Final result for theyy — n°n® cross for,/s < 1.05 GeV. The experimental data are from the
Crystal Ball Collaboration [20].

yy — m°r® amplitude and byFc(s) the yy — " one. We are still left with the unknown
subtraction constant, ¢, for | = 0 and 2, respectively, arféy(s1) — Lo(s1) for | =0 andz= +1.
The ¢y, ¢, constants can be obtained from low energy theorems anchingtto one loopyPT.
The value ofFy(s;) — Lo(s1) can be restricted because the cross sedtigry — n°m®) around the
fo(980) resonance is quite sensitive to this constant. We imposeothg — n°m°) < 40 nb at
s1. This upper bound for the peak of ttig(980) in yy — n°mC is equivalent to impose that the
width of the fo(980) lies in the range 20%5(stat) 117(sys eV as determined in ref.[16]. We shall
see that the effect of this rather large uncertainty alloatetl GeV, see fig.1, is very mild at lower
energies. As thdy(980) resonance gives rise to a smpdlakin the precise data opy — "1
[16], thengy(s) must increase with energy abasieand the case with= +1 is the one realized in
nature. Note that far= —1in eq.(3.2), there is no a local maximum associated withrsBonance
in |Fo(s)| but a minimum, becaugex(s)| has a dip around th&(980) mass.

The source of uncertainty in the approximate relatpis) ~ x(s)o for 4m2 < ,/s< 1.5 GeV
and its functional dependence fr s = 2.25 Ge\? is estimated similarly as in ref.[3, 1]. In fig.1
we show our final results for thgy — m°7°, where the band around each line corresponds to the
estimated error. The error band for the dot-dashed linetisimmwn because it is similar to the ones
of the other two curves. In this figure PY refers to usingltke0 S-wavert of ref.[18], CGL that
of ref.[8] and AO the one of ref.[19]. One observes thatJ® < 0.8 GeV the uncertainty in the
loose bound for thdp(980) greatly disappears. For such energies the main source eftainty
originates from the uncertainties in ther phase parameterizations used.

The previous model allows dor an evaluation of the- yy width. The couplingo — vy,
Joyy, can be evaluated from the residue of the amplittiges) at the second Riemann sheet. It can
be easily obtained that

2 2
20— () Rl (3.4)

whereggr; is the coupling of thes to .
We denote bysy = (Mg —iT4/2)2. Ref.[21] providesMSCt = 441716 MeV and FSCt =
54418 MeV, while from ref.[19] one had1/© = (456+ 6) MeV andl4° = (482+ 20) MeV. In



Scalar radius of the pion angy — it Luis Roca

the following the superscriptdO andCCL refer to those results obtained by employggfrom
ref.[19] or [21], respectively. From eq.(3.4) we obtd@yyy/Jomm| = 2.01+0.11 for 5C- and
1.854-0.09 forsﬁo. Givensg, this ratio of residua is the well defined prediction thatdal from
our Fp(s). We employ the standard narrow resonance width formularimgefg,y, to calculate

Mo —yy = % . One needs to provide numbers fag ;| in order to apply the previous

equation and the determinégly,/Jom|. We first consider the values9,| = (3.17+0.10) GeV
from the approach of ref.[19]. The calculated width&°(g — ) = (1.50+ 0.18) KeV. Not
only the position of the pole in the partial wave amplitudet &lso its residue can be calculated
in the framework of the dispersive analysis described if2&f. Expressed in terms of the com-
plex coefficientyermy, the preliminary result for the residue amountsdghl| = (3.3153%) GeV,
MCCl{g — yy) = (1.98"23%) KeV. Taking the average between these two valued far — yy)

we end with,
(o — yy)=(1.68+0.15) KeV . (3.5)
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