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We study the impact of explicit chiral symmetry breaking of lattice Wilson fermions on mesonic
correlators in theε-regime using Wilson chiral perturbation theory. We generalize theε-
expansion of continuum chiral perturbation theory to nonzero lattice spacinga and distinguish
various regimes. It turnes out that lattice corrections are highly suppressed, as long as quark
masses are of the orderaΛ2

QCD. The lattice spacing effects become more pronounced for smaller
quark masses and may lead to non-trivial corrections of the continuum results at next-to-leading
order. We compute these corrections for standard current and density correlation functions. A fit
to lattice data shows that these corrections are small, as expected.
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1. Introduction

Lattice QCD simulations with light quarks are now approaching domains where a reliable
matching with the chiral effective theory can be performed. Through the matching it is possible
to extract the Low-Energy Couplings (LECs) of the effective theory: many results have been pre-
sented in the past months for the leading order (LO) and next-to-leading order (NLO) couplings,
both for theNf = 2 andNf = 3 effective theory (for a recent review see for instance [1]). A very
important issue which concerns these determinations is the control over the systematic uncertain-
ties. From this point of view, it is very useful to extract the LECs from a large set of observables
and from different kinematic regimes: this will give solidity to lattice results and will help to get a
comprehensive picture of low energy properties of QCD.

An interesting approach is to investigate QCD in a finite volumeV = L3T in the so-calledε-
regime [2, 3], where the pion wavelength is larger than the size of the box,MπL < 1. The relevant
feature of this regime is that, due to a reorganization of the chiral expansion, volume effects are
enhanced, while mass-effects are suppressed with respect to the usual infinite-volume case (orp-
regime, whereMπL� 1). For this reason, at a given order in the perturbative expansion, less LECs
will appear: predictions are less “contaminated” by higher order unknown couplings, making the
ε-regime potentially convenient for the extraction of the LO constants.

From the point of view of lattice computations, reaching theε-regime requires simulating
small quark masses; this may influence the choice of the discretized Dirac operator to be adopted.
Ideally, a Dirac operator which satisfies the Ginsparg-Wilson relation [4] would be very advanta-
geous, since it preserves chiral symmetry at finite lattice spacing, and small quark masses are acces-
sible. Moreover, the topological charge can be unambiguously defined through the index theorem,
and the lattice results may be matched with the predictions of the chiral effective theory at fixed
topology [5]. A large number of quenched computations in theε-regime with Ginsparg-Wilson
Dirac operator has been performed (see [6] for a recent study, and references therein for precedent
computations). Even though the results were to a large extend promising, the main obstacle for
progress in real QCD is the fact that simulations with dynamical sea quarks are still extremely
time-consuming. For recent calculations with dynamical chiral fermions see [7, 8, 9, 10].

On the other hand, dynamical simulations with the Wilson Dirac operator withO(a) improve-
ment are becoming fairly inexpensive. Reaching small quark masses with Wilson fermions has
been considered problematic for many years; this issue can be faced by adopting techniques such
as reweighting [11]. This method has been applied in [12] allowing to reach theε-regime. Also the
ETM collaboration investigated theε-regime with a twisted mass Wilson Dirac operator [13].

Since Wilson fermions explicitly break the chiral symmetry at finite lattice spacing, the match-
ing with the chiral effective theory should be performed only after a continuum extrapolation of
the lattice results. While this is not an unrealistic goal for the near future, the presently available
simulations in theε-regime are carried out at a single value of the lattice spacing. In [12] the pseu-
doscalar and axial correlations functions turned out to be very well described by the predictions of
the continuum chiral effective theory at NLO. Similar observations have been made by ETM. Still,
it is important to have a theoretical understanding of the impact of explicit breaking of chiral sym-
metry on computations in theε-regime. We address this question in [14]: the tool that we adopt
is the so-called Wilson Chiral Perturbation Theory (WChPT) [15, 16], the low-energy effective
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theory for lattice QCD with Wilson Dirac operator. A similar analysis has been carried out in [17].

2. Wilson Chiral Perturbation Theory

The chiral effective Lagrangian of WChPT is expanded in powers of pion momentap2, the
quark massm and lattice spacinga. Based on symmetries of the underlying Symanzik action
[18], the chiral Lagrangian including all terms ofO(p4, p2m,m2, p2a,ma) is given in [16]. The
O(a2) contributions are constructed in [19, 20]. In the following we will restrict ourselves to the
caseNf = 2 with degenerate quark massm. The leading order Euclidean chiral Lagrangian in the
continuum is given by [21, 22]

L2 =
F2

4
Tr

(
∂µU∂µU†)− F2Bm

2
Tr

(
U +U†) . (2.1)

The pseudo Nambu-Goldstone modes are parametrized as usual by the SU(2) field

U(x) = exp(2iξ (x))/F,

andF , B are the familiar LO couplings. The leading terms involving the lattice spacing are

La = âW45Tr
(
∂µU∂µU†)Tr

(
U +U†)− âm̂W68

(
Tr

(
U +U†))2

, (2.2)

La2 =
F2

16
c2a2(

Tr
(
U +U†))2

, (2.3)

wherem̂= 2Bmandâ = 2W0a. W45, W68, W0 andc2 are new LECs which are not determined by
the symmetries. Note that the mass parameterm in Eq. (2.3) is the so-calledshiftedmass [15]:
besides the dominant additive mass renormalization proportional to 1/a it also contains the leading
correction ofO(a).

Currents and densities in WChPT can be constructed by a standard spurion analysis or by
introducing source terms. Here we report the axial vector current and the pseudoscalar density
including the leadingO(a) corrections [23, 24]:

Aa
µ,WChPT = Aa

µ,cont

{
1+

4
F2 â

[
W45Tr(U +U†)+4WA

]}
+2âW10∂µTr

(
Ta(U−U†)

)
, (2.4)

Pa
WChPT = Pa

cont

{
1+

4
F2 â

[
W68Tr(U +U†)+4WP

]}
, (2.5)

where

Aa
µ,cont = i

F2

2
Tr

(
Ta(U†

∂µU−U∂µU†)
)
, Pa

cont = i
F2B

2
Tr

(
Ta(U−U†)

)
, (2.6)

andTa are SU(2) generators normalized such that Tr(TaTb) = δ ab/2. Notice that the LECsWA,P

stem from the renormalization factors, which up toO(a) take the formZA,P = 1+16âWA,P/F2.
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2.1 Power counting in infinite volume

In WChPT there are two parameters which break explicitly the chiral symmetry, the quark
massm (counted asO(p2)) and the lattice spacinga. The power counting is determined by the
relative size of these two parameters. In particular, one distinguishes [23, 25] two different regimes:
(i) the GSM1 regime, wherem∼ aΛ2

QCD and (ii) the Aoki regime wherem∼ a2Λ3
QCD. In the Aoki

regime lattice artefacts are more pronounced, and theLa2 in Eq. (2.3) enters already at LO. The
pion mass at leading order is given by

GSM regime :M2
0 = 2Bm, (2.7)

Aoki regime : M2
0 = 2Bm−2c2a2. (2.8)

The sign ofc2 governs the phase diagram of the theory. The reader can refer to [15] for a complete
discussion.

2.2 Power counting in theε-regime

As already anticipated in the introduction, theε-regime is a finite-volume regime where the
pion wavelength is larger than the size of the box,MπL < 1 (but still L � 1/ΛQCD) [2, 3]. This
corresponds to approaching the chiral limit by keeping the dimensionless quantityµ = mΣV .
O(1) (whereΣ = F2B is the quark condensate in the chiral limit). The main effect of formulating
the effective theory in this regime is that the pion zero-mode becomes non-perturbative and its
contribution has to be treated exactly. This is achieved by factorizing the pseudo Nambu-Goldstone
boson fields as

U(x) = exp

(
2i
F

ξ (x)
)

U0, (2.9)

where the constantU0 ∈ SU(2) represents the collective zero-mode. The non-zero modesξ can
be still treated perturbatively. Theε-regime requires a reorganization of the perturbative series: in
the continuum, this corresponds to taking the quark mass of orderm∼ O(ε4). Mass effects are
hence suppressed compared to thep-regime (or infinite volume) case, while finite-volume effects
are enhanced and become polynomial in(FL)−2.

We now want to extend the WChPT to theε-regime. Also in this case we have to assign a
relative power counting of the lattice spacinga with respect to the quark massm. If we assume that
the quark mass can be considered of orderm∼O(ε4) also in WChPT2, we obtain

GSM regime :m∼O(aΛ2
QCD) → a∼O(ε4), (2.10)

Aoki regime : m∼O(a2Λ3
QCD) → a∼O(ε2). (2.11)

Moreover, theε- expansion allows us to introduce another intermediate regime between the GSM
and the Aoki regime: we can define the GSM∗ regime, wherea∼O(ε3).

We are interested in computing two-point correlation functions within the WChPT in theε-
regime. In particular, we give explicit results for the pseudoscalar and axial time correlators,

δ
abCPP(t) =

∫
d3~x〈Pa(x)Pb(0)〉, δ

abCAA(t) =
∫

d3~x〈Aa
0(x)A

b
0(0)〉. (2.12)

1GSM stands forgenerically small masses.
2While this is a natural choice in the GSM regime, the situation in the Aoki regime can be more subtle. See [14] for

a more detailed discussion on this subject.
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Currents and densities are defined in Eqs. (2.4, 2.5); the subscript “WChPT” is now omitted. By
adopting the power counting that we have defined, we find that in the GSM regime lattice correc-
tions enter only at NNLO, while in the GSM∗ regime they appear already at NLO. In particular, the
leading correction is given only by the termLa2 in Eq. (2.3). The reason of this suppression can be
traced back to the fact that the lattice spacing corrections in the chiral effective theory action and
in the effective operators are either quadratic ina or they come with an additional power of either
m or p2. Hence, in theε-regime the suppression of lattice spacing corrections works similarly as
the suppression of mass effects. On the other hand, in the Aoki regime effects of lattice artefacts
are more severe and show up already at LO.

It is important to observe that these considerations are valid for unimproved Wilson fermions.
If the theory is non-perturbativelyO(a) improved, the corrections due toLa as well as theO(a)
terms in the operators are absent, and lattice artefacts are due toLa2 only. Consequently, in theε-
regime the leading corrections due to lattice artefacts are essentially unaltered for the unimproved
theory, since improvement acts only on subleading terms.

2.3 Leading corrections in the GSM∗ regime

The continuum pseudoscalar and axial correlators at NLO in theε-expansion can be written
as [26]

CPP,AAct(t) = aP,A +bP,Ah1(t/T), (2.13)

where

h1(τ) =
1
2

[(
|τ|− 1

2

)2

− 1
12

]
. (2.14)

For Nf = 2 the coefficientsaP,A,bP,A explicitly read [26]

aP =
L3

2
Σ2

eff

µeff

I2(2µeff)
I1(2µeff)

, bP =
TΣ2

2F2

[
2− 1

µ

I2(2µ)
I1(2µ)

]
, (2.15)

aA = −F2

T

[
1− I2(2µeff)

µeffI1(2µeff)

]
− 2β1

T
√

V

[
2− 1

µ

I2(2µ)
I1(2µ)

]
+

2T
V

k00
I2(2µ)

µI1(2µ)
,

bA = −2T
V

µI2(2µ)
I1(2µ)

. (2.16)

I1, I2 are modified Bessel functions of the first kind;β1 andk00 are so-called shape factors [27, 26],
which depend only on the geometry of the finite box.Σeff is the quark condensate at one loop [3]

Σeff = Σ
(

1+
3

2F2

β1√
V

)
, (2.17)

andµeff = mΣeffV. As already anticipated, the continuum NLO predictions in theε-regime contain
only the LO LECsΣ andF .

The first non-trivial modification of the continuum NLO results appear in the GSM∗ regime
and it is due toLa2 only. In this case we can write down the full NLO correlators in WChPT as

CPP,AA(t) = CPP,AAct(t)+CPP,AA a2(t). (2.18)
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By performing the explicit computation (see [14] for the full details) it turns out that the corrections
CPP,AA a2(t) are time-independent and hence affect only the constant part of the correlators. In
particular we obtain:

CPPa2(t) =
L3Σ2

2
ρ∆a2, CAAa2(t) =

F2

T
ρ∆a2, (2.19)

where

∆a2 =
5µI2

1(2µ)−10I1(2µ)I2(2µ)−3µI2
2(2µ)

2µ3I2
1(2µ)

, (2.20)

andρ = F2c2a2V is the dimensionless LEC which parametrizes theO(a2) correction.
It is useful to compute the leadingO(a2) corrections to the PCAC quark mass:

mPCAC = m

[
1+ρ

(
2

µ2 −
I1(2µ)

µI2(2µ)

)]
. (2.21)

It is now possible to express the correlatorsCPP,AA(t) as a function of̃µ = mPCACΣV; the result is

CPP(t) = CPPct(t)+
L3Σ2

2
ρ∆̃a2, CAA(t) = CAAct(t)+

F2

T
ρ∆̃a2, (2.22)

where the continuum correlators are as in Eq. (2.13), but with the replacementsµ → µ̃, µeff →
µ̃eff = mPCACΣeffV and

∆̃a2 =
4µ̃2I3

1(2µ̃)−11µ̃I2
1(2µ̃)I2(2µ̃)+2(3−2µ̃2)I1(2µ̃)I2

2(2µ̃)+5µ̃I3
2(2µ̃)

2µ̃3I2
1(2µ̃)I2(2µ̃)

. (2.23)

Other correlation functions can be computed along the same line. For instance, in [14] we report
also the result for the vector correlator.

3. Reanalysis of lattice data and conclusions

These predictions from WChPT at NLO can be tested against lattice data generated in [12],
where pseudoscalar and axial correlators have been computed on an ensemble withNf = 2 flavours
of dynamical improved NHYP Wilson fermions [28]. The lattice spacing isa' 0.115 fm, and two
lattice extents are available,L1 = 16a' 1.84 fm andL2 = 24a' 2.8 fm. Quark masses approach the
ε-regime, withµ̃ ' 0.7−2.9 for the volumeV1 = L4

1 andµ̃ ' 2.1−5.0 for the volumeV2 = L4
2. In

the GSM∗ regime, we have only the additional LECc2 with respect to the continuum case. Notice
that its value will depend on the particular discretized action which is used. We simultaneously fit
the two correlators for all available quark masses; for the volumeV2, a fit in the ranget ∈ [6,18]
gives [

ΣMS(µ = 2 GeV)
]1/3

= 249(4) MeV, F = 88(3) MeV, c2 = 0.02(8) GeV4. (3.1)

The data, along with the theoretical curves, are shown in Fig.1. The errors from the renormal-
ization factorsZA, ZMS

P (µ = 2 GeV) computed in [12] are not included in the uncertainties of the
LECs. Varying the time range of the fit does not give significant differences for the LECs, as long
astmin/a > 4. Also discarding the heaviest mass does not change the results of Eq. (3.1) within
the statistical errors. The smallest volumeV1 yields values which are consistent with Eq. (3.1), but
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Figure 1: Fit of the WChPT predictions to lattice data. All data points within the
fit range of t/a ∈ [6,18] for the four sea quark masses are included in the combined
fit. The hopping parameterκ = (0.128150,0.128125,0.1281,0.128050) corresponds toamPCAC =
(0.0019(4),0.0024(3),0.0030(3),0.0044(3)) respectively. The axial vector correlator is multiplied by a
factor 50 for better visibility.

the largeχ2 of the fit may indicate that NLO formulae are no longer applicable. The values ofF
andΣ are compatible with other determinations [1], while the value ofc2 is compatible with zero.
A continuum fit (withc2 = 0) yields virtually unchanged values forF andΣ, showing that cut-off
effects do not impact the extraction of the LECs beyond the level of the statistical uncertainties.

This is a very encouraging result: simulations with Wilson fermions in theε-regime are fea-
sible and seem to be a viable alternative to dynamical simulations with chiral fermions. Similar
conclusions have been reached in [17]. The results derived here can be generalized in various ways,
for example to the case with a twisted mass term or to an arbitrary number of flavors.
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