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1. Introduction

Light hadron spectroscopy at low energies lies beyond the realm tirpative QCD. Al-
though lattice QCD provides, in principle, a rigorous way to extract noneqiEtive quantities
from QCD, current lattice results are typically still obtained for relativehhldgark masses. Thus,
in order to make contact with experiment, appropriate extrapolation formeks to be derived.
This is typically done by using Chiral Perturbation Theory (ChPT)[1]johtprovides a model
independent description of the dynamics of the lightest mesons, namelyptise kaons and etas,
which are identified with the Goldstone Bosons (GB) associated to the QQRasmmus Chiral
Symmetry breaking. Hence, ChPT is built out of only those fields, as a lewggrexpansion of a
Lagrangian whose terms respect all QCD symmetries, and in particular its sgnbremking pat-
tern. Actually, this chiral expansion becomes a series in momenta and messesn@enerically
O(p?/N\?), when taking into account systematically the small quark masses of the thresstigh
flavors that can be treated perturbatively. The chiral expansion scAles 47tf,;, where f; de-
notes the pion decay constant. ChPT is renormalized order by ordesbybitig loop divergences
in the renormalization of parameters of higher order counterterms, knevawaenergy constants
(LEC), which are the coefficients of the energy and mass expansidhastihey have no quark
mass dependenc&heir values depend on the specific QCD dynamics, and have to be detdrmin
either from experiment or from lattice QCD.

The relevant remark for us is that, thanks to the fact that ChPT has thesyanmeetries as
QCD and that it couples to different kind of currents through the samepatiie ChPT expansion
provides asystematic and model independdascription of how the observables depend on some
QCD parameters, like the quark masses, and this can be implemented systemapidallthe
desired order in the ChPT expansion.

We review here our recent derivation of a modified version of the IJMbE&ed on dispersion
theory, unitarity and ChPT to next—to—leading order (NLO), which alsowauts properly for the
Adler zero. Within this approach we are able to predict the quark massdepee of ther andp
mesons|[3], thus providing an explicit representation of the LECs ajpgeiarthe ChPT analysis
of the vector meson mass of Refg. [4, 5].

In this work we focus on the two lightest resonances of QCD gtla@d theo. It is therefore
enough to work with the two lightest quark flavargl in the isospin limit with a mass= (m, +
my)/2. Sincemy is given bym?Z ~ M+ ... [[l], studying thenidependence is equivalent to study the
m;; dependence.

2. Unitarization and dispersion theory

The o and p resonances appear as poles on the second Riemann shee{lofljhe (0,0)
and(1,1) rrrrscattering partial waves of isosgind angular momentud) respectively. Unitarity
implies for these partial waves, and physical valuesizlow inelastic thresholds, that

1 ,
Imt(s) = a(s)[t(s)|> = Im 0l =—0(s), with  g(s) =2p/V/s, (2.1)
where s is the Mandelstam variable apds the center of mass momentum. Consequently, the
imaginary part of the inverse amplitude is known exactly. Hoewever, Cmiditades, being an
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expansion ~ ty +t4 + - - -, with t, = O(p¥), can only satisfy Eq[(3.1) perturbatively

Imty(s) =0, Imty(s)=a(9)[t2(s))% ... = im0 _ a(s), (2.2)

t3(s)
and cannot generate poles. Therefore the resonance region l@xlibyg reach of standard ChPT.
This region however, can be reached combining ChPT with dispersiorytagber for the ampli-
tude [§] or for the inverse amplitude through the IANI [ [B, 91.

Here we review our recent derivatid [2] of a modified IAM formula togedy account for
the Adler zero region. The main ingredient is a dispersion relation for tleesavamplitude, whose
analytic structure consist on a right cut frams 4m? to s= o, a left cut froms= —o to s= 0, and
possible poles comming from zeros of the amplitude. Indeed, for the scalaswhe amplitude
vanishes at the so called Adler zesg, that lies in the real axis below threshold, thus within the
ChPT region of applicability. Its position can be approximated from ChPTshes, S+ S+ -+ -,
wheret, vanishes a$, to +t4 ats, + 4, etc.

We now write a once substracted dispersion relation for the inverse amplittidge the
substraction point has been chosen to be the Adler ggro,

1 . S—Sa

Im1/t(s)
5 e e e +Pe(L), 23

whereLC stands for a similar integral over the left cut aR@ stands for the contribution of the
pole at the Adler zero, which reads:

_ ) \_ 1 CY
PC(L/t) = —(5—sn) 5—?( (§—9)(s - SA)) S t(sa)(s—sa)  2/(sa)?

The different terms in Eq[(3.3), can be evaluated in the following way:

e The right cut can bexactlyevaluated taking into account the elastic unitarity condition

Egs. [2.1),[2]2), ImAt(s) = —0(5) = —Imty(s) /t3(S), for s’ € (4m?2, o).

e The pole contribution only involves amplitude derivatives evaluated at ther Adro,which
is a low energy pointso they can be can be safely approximated with ChPT.

e The left cut, which is 1(s —s) suppressed fa values near the physical regionweighted
at low energiesso it is appropiate to approximate it with ChPT.

e Finally, in the cut contributions we approximate—sa)/(s —sa) ~ (s— ) /(S —2), which
is its LO chiral expansion and a remarkably good approximation as losigsas sufficiently
far froms, andsa, which is indeed the case for the cut integrals.

Altogether we are able to write Eq. (P.3) as

ti ~ _RC(ts/88) — LC(ta/12) +PC(L/t) = - 2O | p/2) 1 PO(L),  (2.9)
(s t5(s)

~t4(9) /t3(5)+PC(ta/t2)
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where we have taken into account that a once subtracted dispersionreln be written fot4/t§,
the substraction point beirg:

ta(s) _s—= Imty(s) /t3(S)
29 7 S o5 9 "C/B) +PC(ta/ty). (2.5)

wherePC(ty/t3) stands for the contribution of the triple pole at From Eq. [2}4) one easily
arrives at the modified IAM (mIAM) formuldJ2]:

2
) 2O A~ - T (o) ). (26)
The standard IAM formula is recovered fé(s) = 0, which holds exactly for all partial waves
except the scalar ones. In the original IAM derivatifin[]7 A8%) was neglected, since it formally
yields a NNLO contribution and is numerically very small, except near the Aalew, where it
diverges. However, if\(s) is neglected, the IAM Adler zero occursst correct only to LO, it is

a double zero instead of a simple one, and a spurious pole of the amplitugiaragjose to the
Adler zero on both the first and second sheet. All of these caveatsraoed with the mIAM, Eq.
(2.8). The differences in the physical and resonance region bettiiedAM and the mIAM are
less than 1%. However, as we will see, for lamgethe o poles appear as two virtual poles on the
second sheet below threshold, one of them moving towards zero anotbapmg the Adler zero
region, where the 1AM fails. Thus, we will use for our calculations the mlAlithough it is only
relevant for the mentioned secoadpole, and only when it is very close to the spurious pole.

In summary, there are no model dependences in the approach, buppuskianations to a
given order in ChPT. Let us remark that, in our derivation, ChPT has lsed alwayst low
energiedo evaluate parts of a dispersion relation, whose elastic unitarity cut is takeadoount
exactly. Thus, the IAM formula is reliable up to energies where inelasticitiesrbe important,
even though ChPT does not converge at those energies, becaRiBésCiot being used there. This
argument also holds when tllemoves near threshold, because the Adler zero, which is the point
where ChPT is used, is still at low energies far away from the pole. Noteh@airtual pole that
goes down in energies is on the second sheet, so does not prevese tBRIT at the Adler zero, on
the first sheet. Remarkably, the simple formula of the elastic mIAM[E{.(2 6héstandard IAM
one), while reproducing the ChPT expansion at low energies, is alsdabknerate both the
ando resonances with values of the LECs compatible with standard JhPT [9fhén words, the
IAM generates the pole§][8] associated to these resonances in thel &eamann sheet. The fact
that resonances amot introduced by han@lut generated from first principles and data, is relevant
because the existence and nature of scalar resonances is the silbjengelasting intense debate.

To be precise, the IAM, when reexpanded, reproduces the ChiEE s@rto the order to which
the input amplitude was evaluated and, in particular, the quark mass deperatgees with that of
ChPT up to that order. A few of the higher order terms are producedatty by the unitarization
but not the complete series— for a discussion of this issue for the scalarfgnim factor see
Ref.[1I0]. However, the formalism just described still provides us withreefstimate of the quark
mass dependence of the resonance properties.
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Figure 1. Left: Movement of theo (dashed lines) angd (dotted lines) poles for increasimg;; (direction
indicated by the arrows) on the second sheet. The filled (dpexes denote the pole positions for tné€p)

at pion masses; = 1, 2, and 3x m™® respectively. Fomy, = 3mP™S three poles accumulate in the plot
very near tharr threshold. Note that all poles are always far enough fromAttiler zero (circles) Right:
Comparison of our results for thé, dependence om,; with some recent lattice results frojnJ11]. The grey
band covers only the error coming from the LECs uncert&siti

3. Results

By changingm; in the amplitudes we see how the poles generated with the IAM evolve. We
will use the LECs values £, = 0.8+ 3.8 and 161} = 6.2+ 5.7 from [d] and fit the mIAM to
data up to the resonance region to fin&l}@: —3.74+0.2 and 161, = 5.0+ 0.4. These LECs are
evaluated a1 = 770 MeV.

The values ofm;; considered should fall within the ChPT range of applicability and allow for
some elastiorrT regime belowkK threshold. Both criteria are satisfiednit; < 500 MeV, since
SU(3) ChPT still works with such kaon masses, and becausenfor 500 MeV, the kaon mass
becomes~ 600, leaving 200 MeV of elastic region. Of course, we expect highigrarorrections,
which are not considered here, to become more relevaniais increased. Thus, our results
become less reliable as; increases due to th@(p®) corrections which we have neglected

Fig. 1 (left) shows the evolution of the andp pole positions as; is increased. In order to
see the pole movements relative to the two pion threshold, which is also ingreaiguantities
are given in units ofmy, so the threshold is fixed afs = 2. Both poles moves closer to threshold
and they approach the real axis. Theoles reach the real axis as the same time that they cross
threshold. One of them jumps into the first sheet and stays below threshibid real axis as a
bound state, while its conjugate partner remains on the second sheetgbsaetithe very same
position as the one in the first. In contrast, th@oles go below threshold with a finite imaginary
part before they meet in the real axis, still on the second sheet, becoirtung gtates. Asny is
increased further, one of the poles moves toward threshold and jumpghttee branch point to
the first sheet and stays in the real axis below threshold, very closestmjt keeps growing. The
othero pole moves down in energies further from threshold and remains on tbedssheet. This
analytic structure, with two very asymmetric poles in different sheets foakaiswave, could be
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Figure 22 m; dependence of resonance masses (left) and widths (rigl)ita of the physical values.
In both panels the dark (light) band shows the results forah@). The width of the bands reflects the
uncertainties induced only from the uncertainties in th€kEThe dotted line shows tlmemass dependence

estimated in Ref.|ﬂ6]. The dashed (continuous) line shtwst; dependence of the (p) width from the
change of phase space only, assuming a constant couplihg césonance tort.

a signal of a prominent molecular compongnt [12, 13], at least for jgigemasses. Similar pole
movements have been also found within quark models [14] and in finite densitysis [15)].

In Fig. [2 (left) we show them;; dependence dfl, andM, (defined from the pole position
/Spole = M —il"/2), normalized to their physical values. The bands cover the LECstaiuéss.
We see that both masses grow with, but My grows faster thaM,. Below m; ~ 330 MeV we
only show one line because the two conjugatgoles have the same mass. Above 330 MeV, these
two poles lie on the real axis with two different masses. The heavier poketgaards threshold
and aroundn; ~ 465 MeV moves into the first sheet. Note also thatrthedependence d¥l, is
much softer than suggested [n][16], shown as the dotted line, which in adddasnot show the
two virtual poles.

In the right panel of Fig[]2 we show thwe, dependence of , andl"; normalized to their
physical values, where we see that both widths become smaller. We catiigatecrease with the
expected reduction from phase space as the resonances appmachtkineshold. We find that
Ip follows very well this expected behavior, which implies that g coupling is almosmy,
independent. In contrast; shows a different behavior from the phase space reduction expecta-
tion. This suggest a strong; dependence of the coupling to two pions, necessarily present for

molecular stateg [13, 1L7].

Fig.[1 (right) shows our results for tiiemass (here defined as the point where the phase shift
crossest/2, except for thosen,; values where thp becomes a bound state, where it is defined then
from the pole position) dependence iy compared with some recent lattice resufty [11], where
we also quote the PDG value for tpenmass. Taking into account the incompatibilities within errors
between different lattice colaborations, we find a qualitaive good agreesitd the lattice resuts.
Also, we have to take into account that timg dependence in our approach is correct only up to
NLO in ChPT, and we expect higher order corrections to be importartéfge pion masses.
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4. Summary

We have reviewed our derivation of a modified version of the IAM [2]jahitis derived from
the first principles of analyticity, unitarity, and ChPT at low energies arsdicorrect behaviour
around the Adler zero. It is able to generate th@nd p resonance poles without any a priori
assumptions, and yields the correct dependence on the pion mass up tmKILBT. We have
predicted the evolution of the resonance pole positions with increasing pssi[Bjand have seen
that both resonances become bound states. We have also shown fhatitbeupling constant is
almostm; independent and we have found a qualitative agreement with some lattitts festhe
p mass evolution wittm;. These findings might be relevant for studies of the meson spectrum and
form factors—see Ref] [1.8]—on the lattice.
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