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We discuss the strong decay widths and photoproduction helicity amplitudes of excited baryons
in the context of the 1/Nc expansion of QCD. The results show that in order to get a satisfactory
description of the empirical data the sub-leading corrections in 1/Nc are, in general, important.
It is also found that, while one-body effective operators are dominant, there is some evidence for
the need of two-body effects which, in general, are not included in quark model calculations.
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1. Introduction

The 1/Nc expansion of QCD [1] has proven to be a useful and systematic framework for the
analysis of various baryon properties. This is mostly due to the existence of a contracted spin-
flavor symmetry in the large Nc limit[2, 3]. Although the larger symmetry O(3)×SU(2N f ) is not
an exact symmetry in the excited baryon sector[4], its N0

c breaking is small as several analyses
of the baryon spectrum have shown[5, 6, 7], and is therefore very useful to set the framework of
the 1/Nc expansion. Here we report on the application of this approach to the study of the strong
decays and the photoproduction amplitudes of the low-lying excited non-strange baryons.

2. Strong decays

The strong `P partial wave decay width of a resonance with total angular momentum, spin
and isospin J∗,S∗, I∗, respectively, into a ground state baryon with quantum numbers J, I and a
pseudo-scalar meson with isospin IP can be expressed as

Γ
[`P,IP] =

kP

8π2
MB

M∗
B

|B(`P, IP,J, I,J∗, I∗,S∗)|2

(2J∗+1)(2I∗+1)
, (2.1)

where B(`P, IP,J, I,J∗, I∗,S∗) are the reduced matrix elements (RME’s) of the baryonic operator.
Such operator admits an expansion in 1/Nc that has the general form[8, 9]

B[`P,IP]
[µ,α] =

(
kP

Λ

)`P

∑
q, j

C[`P,IP]
q

(
ξ

(`) G
[ j,IP]
q

)[`P,IP]

[µ,α]
(2.2)

The factor (kP/Λ)`P is included to take into account the chief meson momentum dependence of
the partial wave, where the scale Λ is arbitrary, and is taken to be equal to 200 MeV. The operator
ξ (`) drives the transition from the (2` + 1)-plet to the singlet O(3) state. The operators G give
transitions within the spin-flavor representations in which the excited and GS baryons reside. They
can be written as products of the generators of the spin-flavor algebra acting on the excited quark
state λ = si, ta,gia and on the core Λc = (Sc)i,(Tc)a,(Gc)ia. The dynamics of the decays is encoded
in the effective dimensionless coefficients C[`P,IP]

q . Here, they are obtained by fitting the available
empirical decay widths[10].

In the case of the baryons belonging to the [70,1−]-plet, we have two extra unknown parame-
ters: the mixing angles θ2J between the two sets of excited nucleon states N∗

J , where J = 1/2,3/2.
The corresponding operators and results of the fits for the non-strange members of such multiplet
are given in Table 1. Details of the calculation can be found in Ref.[8]. We observe that the leading
order (LO) fit already provides a reasonable description of the decay widths in the sense that it
gives a χ2 per degree of freedom χ2

dof = 1.5. The next-to-leading (NLO) corrections play some
role in improving the results, although the corresponding coefficients are not well determined due
to the large error bars in the empirical widths. In any event, a clear dominance of the one-body
operators is observed. Note that to NLO, although no degeneracy appears in θ1, there is an almost
two-fold ambiguity in θ3.

The analysis of the strong decays corresponding to the positive parity resonances can be carried
out in a similar fashion. Details are given in Ref.[9]. In the case of the non-strange members of
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Table 1: Operators and fit parameters for strong decays of non-strange [70,1−] excited states. LO: There
is a two-fold ambiguity for the angle θ1. For θ3 there is an almost two-fold ambiguity which leads to
two slightly different values of C[2,1]

6 . NLO: Due to lack of empirical data, three-body operators and the
subleading operator for η emission are not included. No degeneracy in θ1 but almost two-fold ambiguity in
θ3. Values of coefficients which differ in the corresponding fits are indicated in parenthesis.

Operator Fit parameters
LO NLO(

ξ (1) g
)[0,1]

31±3 23±3
1

Nc

(
ξ (1) (s Tc)

[1,1]
)[0,1]

- (7.4,32.5)± (27,41)

1
Nc

(
ξ (1) (t Sc)

[1,1]
)[0,1]

- (20.7,26.8)± (12,14)

1
Nc

(
ξ (1) (g Sc)

[1,1]
)[0,1]

- (−26.3,−66.8)± (39,65)(
ξ (1) g

)[2,1]
[i,a] 4.6±0.5 3.4±0.3

1
Nc

(
ξ (1) (s Tc)

[1,1]
)[2,1]

- −4.5±2.4

1
Nc

(
ξ (1) (t Sc)

[1,1]
)[2,1]

- (−0.01,0.08)±2

1
Nc

(
ξ (1) (g Sc)

[1,1]
)[2,1]

- 5.7±4.0

1
Nc

(
ξ (1) (g Sc)

[2,1]
)[2,1]

- 3.0±2.2

1
Nc

(
ξ (1) (s Gc)

[2,1]
)[2,1]

(−1.86,−2.25)±0.4 −1.73±0.26(
ξ (1) s

)[0,0]
11±4 17±4

θ1
1.56±0.15
0.35±0.14

0.39±0.11

θ3 (3.00,2.44)±0.07 (2.82,2.38)±0.11

χ2
dof 1.5 0.9

the [56′,0+]-plet the LO fit turns out to be rather poor. In fact, NLO operators are essential for
improving the ratio between the two N(1440) decay widths. Concerning the non-strange resonances
belonging to the [56,2+]-plet we find that for the P wave decays the LO analysis already provides
an excellent fit while for the F wave decays, even at NLO, the only way to get a reasonably good
result is by removing the π∆ decay of the N(1680) from the fit.

3. Photoproduction amplitudes

The helicity amplitudes of interest are defined in the standard form[10]

Aδ =−
√

2πα

ω
η(B∗)〈B∗,δ |~ε+1 · ~J(ω ẑ) | N,δ −1〉, (3.1)

3



P
o
S
(
E
F
T
0
9
)
0
4
5

Phenomenology of Excited Baryon Norberto N. Scoccola

where δ = 1/2 or 3/2 is the helicity defined along the ẑ-axis, which coincides with the photon
momentum,~ε+1 is the photon’s polarization vector for helicity +1, α is the fine-structure constant,
and N and B∗ denote, respectively, the initial nucleon and the excited baryon. A sign factor η(B∗)
from the strong amplitude for πN → B∗ is included. The electromagnetic current ~J can be rep-
resented as a linear combination of effective current operators which have the most general form(

k[L′]
γ B[LI]

)[1I]
where the upper scripts display the angular momentum and isospin, and throughout

the neutral component, i.e. I3 = 0, is taken. k[L′]
γ is an irreducible tensor built with the photon mo-

mentum, chosen here to be a spherical harmonic, and B[LI] =
(

ξ (`)G [`′I]
)[LI]

are operators where,

as in Sec.2, ξ (`) is the O(3) tensor and G [`′I] is a spin-flavor tensor operator with I = 0 or 1, which
can be expressed in terms of products of the generators of spin-flavor algebra acting either on the
excited quark or the Nc −1 quark core. Since there is a one to one correspondence between L and
the multipole to which an operator B[LI] contributes to, we denote them accordingly, e.g., ELS

n is
the nth EL isoscalar operator. The bases of operators are given in Table 2 for the non-strange mem-
bers of negative parity multiplet [70, 1−]. The E- and M-multipole components of a given helicity
amplitude of isospin I can be expressed in terms of the RME of the operators B[LI] as follows

AX [LI]

δ
(I3,J∗I∗) =

(−1)J∗+I∗+I+1 wX(L) η(B∗)√
(2J∗+1)(2I∗+1)

√
3αNc

4ω
〈L,1;

1
2
,δ −1 | J∗,δ 〉〈I,0;

1
2
, I3 | I∗, I3〉

×∑
n

g[LI]
n,X (ω) 〈J∗I∗ ‖B

[LI]
n ‖ 1

2
〉 (3.2)

where X = M (E) and wX(L) = 1 (
√

(L+1)/(2L+1)) with (−1)Lπex = negative (positive). Here,
πex is the parity of the excited multiplet. In Eq.(3.2) I3 denotes the isospin projection of the initial
nucleon. The RME in Eq.(3.2) can be evaluated using similar techniques to those in [5]. Details
can be found in Ref.[11]. In our calculations the coefficients g[LI]

n,X (ω) are expressed by including

the barrier penetration factor: g[L, I]
n,X × (ω/Γ)LX , where LX = L−1 for EL operators, LX = L for ML

operators. Throughout we choose the scale Γ = mρ . The coefficients g[L, I]
n,X are to be determined

by fitting to the empirical helicity amplitudes[10]. The sign η(B∗) can be fixed from the studies
described in Sec.2. Those analyses determine the signs up to an overall sign for each pion partial
wave.

We consider now the helicity amplitudes corresponding to the non-strange members of the
[70, 1−]-plet. Since the partial waves involved in the strong decay of these states are S and D
waves, we have one extra relative sign, which we will call ξ . For the mixing angles θ2J we use here
the values obtained from the analysis of the strong decay widths discussed in Sec.2. As seen such
analysis gives two consistent but different results for the mixing angle θ3 = 2.82,2.38. One finds
that some of the η signs are different for these two values. We take into account this with an extra
sign factor κ , which is equal to +1 (−1) for θ3 = 2.82 (2.38). A first analysis concerns the choices
left by the values of the mixing angle θ3, and the signs ξ and κ . Using all the LO operators,
the choices are made by considering the χ2 for all possibilities. The sign ξ = −1 is strongly
favored. This is in agreement with an old determination based on the single-quark-transition model
[12, 13]. The second choice that is favored, although less markedly than the one for ξ , is θ3 = 2.82.
The helicity amplitudes show here their importance by allowing to determine the relative sign ξ
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between the strong S and D wave amplitudes, and by selecting between the two possible values of
θ3 consistent with the strong transitions. The results from the fits we have carried out are given
in Table 2. In the fits we expand the operator matrix elements in powers of 1/Nc to the order
corresponding to the fit. In the LO fits, we have set the errors in the input helicity amplitudes to be
30% of the value of the helicity amplitude or the experimental value if this is larger. The point of
this is to test whether or not the LO analysis is consistent in the sense that it gives a χ2

dof ∼ 1. For
the NLO fits, we use of course the empirical errors. The LO fit shows a χ2

dof of 2.42. This indicates
that there are NLO effects to be taken into account for a satisfactory fit. The NLO order fit NLO1,
involves all operators in the basis. It gives values for the coefficients of the LO operators which
are, within the expected deviations from 1/Nc counting, consistent with the values obtained in the
LO fits. Moreover, none of the coefficients of the NLO operators has a magnitude larger than that
of the largest LO coefficients. This is a strong indication of the consistency of the 1/Nc expansion.
From the magnitude of the coefficients, it is obvious that only a few NLO operators are needed
for a consistent fit. In fact, as shown by the fit NLO2 in Table 2, a consistent fit is obtained with
only five LO and one NLO operators. Of these dominant operators four are one-body and LO, and
two are two-body with one of them LO and the other NLO. Note also that none of the two-body
E3 operators is required. It is remarkable that out of eleven NLO operators only one is essential
for obtaining consistent fits. At this point it is important to mention that many of the empirical
amplitudes have errors that are larger than what is needed for an accurate NLO analysis. It is for
this reason that one cannot draw a more precise NLO picture which could unveil the role of other
operators.

The helicity amplitudes corresponding to the positive parity resonances can be analyzed in a
similar way[14]. In the case of the [56′,0+]-plet states one finds that to LO only the M1 operator
G[1,1] contributes leading to χ2

dof ∼ 2. The inclusion of one-body NLO operators improves some-
what the fit, although the two-body isovector M2 operator [S,G][2,1] is definitely required to get a
good overall agreement with the empirical data. A similar situation happens for the [56,2+]-plet
resonances in the sense that the LO fit leads to χ2

dof ∼ 2.1. In fact a minimum number of six op-
erators, three of which are LO, is needed to get χ2

dof ∼ 1. One of the required NLO operators is a
two-body operator generally not included in quark model calculations.

4. Conclusions

To conclude, the 1/Nc expansion of QCD provides a systematic approach to the properties
of the excited baryons. The analysis of the masses shows that the N0

c breaking of the spin-flavor
symmetry is small. For strong decays one finds, in general, a dominance of the one-body LO
operators. In some cases, as e.g. the D wave decays of the negative parity excited baryons, the
1/Nc corrections are not well established due to the rather large uncertainties of the empirical data.
In the particular case of the [56′,0+] baryons, two-body NLO operators seem to be required to
obtain a good description of the empirical data. In the case of the photoproduction amplitudes,
the present analysis indicates that only a reduced number of operators in the basis turn out to be
relevant. Several of those operators can be easily identified with those in quark models, but there are
also two-body operators usually not included in quark models which are necessary for an accurate
description of the empirical helicity amplitudes.
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Table 2: Basis operators and fit parameters g[LI]
n,X for the helicity amplitudes of non-strange [70, 1−] baryons.

Errors are indicated in parenthesis. Results for the choice ξ =−1 are shown.

Operator LO NLO1 NLO2

E1S
1 =

(
ξ [1,0]s

)[1,0] −0.4(0.2) −0.3(0.2) −0.3(0.2)

E1S
2 = 1

Nc

(
ξ [1,0] (s Sc)

[0,0]
)[1,0]

0.5(0.6)

E1S
3 = 1

Nc

(
ξ [1,0] (s Sc)

[1,0]
)[1,0]

1.0(0.9)

E1S
4 = 1

Nc

(
ξ [1,0] (s Sc)

[2,0]
)[1,0]

0.5(0.6)

E1V
1 =

(
ξ [1,0]t

)[1,1]
2.3(0.3) 3.0(0.2) 3.5(0.1)

E1V
2 =

(
ξ [1,0]g

)[1,1] −0.7(0.4) 0.4(0.3)

E1V
3 = 1

Nc

(
ξ [1,0] (s Gc)

[2,1]
)[1,1]

0.4(0.5) −0.2(0.4)

E1V
4 = 1

Nc

(
ξ [1,0] (s Tc)

[1,1]
)[1,1]

−1.9(1.4)

E1V
5 = 1

Nc

(
ξ [1,0] (s Gc)

[0,1]
)[1,1]

+ 1
4
√

3
E1V

1 −0.2(0.9)

E1V
6 = 1

Nc

(
ξ [1,0] (s Gc)

[1,1]
)[1,1]

+ 1
2
√

2
E1V

2 4.2(0.9) 3.9(0.8)

M2S
1 =

(
ξ [1,0]s

)[2,0]
0.8(0.2) 1.5(0.3) 1.3(0.2)

M2S
2 = 1

Nc

(
ξ [1,0] (s Sc)

[1,0]
)[2,0]

−1.2(1.3)

M2S
3 = 1

Nc

(
ξ [1,0] (s Sc)

[2,0]
)[2,0]

−1.2(1.7)

M2V
1 =

(
ξ [1,0]g

)[2,1]
3.0(0.6) 3.8(0.6) 3.9(0.4)

M2V
2 = 1

Nc

(
ξ [1,0] (s Gc)

[2,1]
)[2,1]

−3.1(1.0) −2.3(1.1) −2.7(0.6)

M2V
3 = 1

Nc

(
ξ [1,0] (s Tc)

[1,1]
)[2,1]

−0.1(1.1)

M2V
4 = 1

Nc

(
ξ [1,0] (s Gc)

[1,1]
)[2,1]

+ 1
2
√

2
M2V

1 −1.5(2.4)

E3S
1 = 1

Nc

(
ξ [1,0] (s Sc)

[2,0]
)[3,0]

0.3(0.8)

E3V
1 = 1

Nc

(
ξ [1,0] (s Gc)

[2,1]
)[3,1]

0.7(0.9) 0.3(0.5)

χ2
do f 2.42 − 0.94

dof 11 0 13
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