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Wigner and Serber symmetries for the two-nucleon system provide unique examples of long dis-

tance symmetries in Nuclear Physics, i.e. symmetries of themeson exchange forces broken only

at arbitrarily small distances. We analyze the largeNc picture as a key ingredient to understand

these, so far accidental, symmetries from a more fundamental viewpoint. A set of sum rules for

NN phase-shifts, NN potentials and coarse grainedVlowk NN potentials can be derived showing

Wigner SU(4) and Serber symmetries not to be fully compatible everywhere. The symmetry

breaking pattern found from the partial wave analysis data,high quality potentials in coordinate

space at long distances and theirVlowk relatives is analyzed on the light of largeNc contracted

SU(4)C symmetry. Our results suggest using largeNc potentials as long distance ones for the

two-nucleon system where the meson exchange potential picture is justified and known to be con-

sistent with largeNc counting rules. We also show that potentials based on chiralexpansions do

not embody the Wigner and Serber symmetries nor do they scaleproperly withNc. We implement

the One Boson Exchange potential realization saturated with their leadingNc contributions due

to π,σ ,ρ andω mesons. The short distance 1/r3 singularities stemming from the tensor force

can be handled by renormalization of the Schrödinger equation. A good description of deuteron

properties and deuteron electromagnetic form factors in the impulse approximation for realistic

values of the meson-nucleon couplings is achieved.
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1. Introduction

The standard point of view in Particle Physics has often been that increasing the energy implies
a higher degree of symmetry. In QCD, for instance, scale invariance roughly sets in for momenta
much higher than the quark masses. In Nuclear Physics the situation may be exactly the opposite;
some symmetries such as those introduced by Wigner [1] and Serber1 are unveiled at low energies
where the wavelength becomes larger than a certain scale. For obvious reasons we call themLong
Distance Symmetries(LDS) [3, 4]. In the meson exchange picture this implies the presence of
arbitrarily large symmetry breaking counterterms. We analyze these, so faraccidental, LDS in the
two-nucleon system below pion production threshold corresponding to CMmomentap≤ 400MeV.

2. Wigner symmetry

The Wigner SU(4) spin-flavour symmetry corresponds to the algebra of isospinTa, spinSi and
Gamow-TellerGia generators in terms of the one particle spinσ i

A and isospinτa
A Pauli matrices,

Ta =
1
2 ∑

A

τa
A , Si =

1
2 ∑

A

σ i
A , Gia =

1
2 ∑

A

σ i
Aτa

A . (2.1)

The two-body Casimir operator isCSU(4) = TaTa + SiSi + GiaGia. The one-nucleon irreducible
representations is a quartet made of a spin and isospin doublet

4 = (p ↑, p ↓,n ↑,n ↓) = (S= 1/2,T = 1/2) .

Two nucleon states with relative angular momentumL and total spinS and isospinT fulfilling
(−1)S+L+T = −1 due to Fermi statistics correspond to an antisymmetric sextet and a symmetric
decuplet which, in terms of(S,T) representations of theSUS(2)⊗SUT(2) subgroup, are

6A = (1,0)⊕ (1,0) L = 0,2, . . . → (1S0,
3S1),(

1D2,
3D1,2,3),(

1G2,
3G1,2,3), . . . (2.2)

10S = (0,0)⊕ (1,1) L = 1,3, . . . → (1P1,
3P0,1,2),(

1F1,
3F0,1,2), . . . (2.3)

In particular, one obtainsV3S1
(r) = V1S0

(r) which seems verified forr > 2fm (see Fig. 1, left) for
high quality potentials [5], i.e. havingχ2/DOF < 1 for 6000 data !. However, one might think
that since a symmetry of the potential implies a symmetry of the S-matrix one should also have
δ1S0

(p) = δ3S1
(p) at low energies, in total contradiction to the data in Fig. 1. (see Sect. 4).

3. Serber symmetry

A vivid demonstration of Serber symmetry is demonstrated in Fig. 2 (left) wherethe pn dif-
ferential cross section at low CM momenta,p≤ 250MeV, fulfills to a good approximation

dσpn

dΩ
= | fpn(π −θ)|2 = | fpn(θ)|2 , (3.1)

suggesting no interaction in odd L-waves asPL(θ) = (−)LPL(π −θ), a fact verified by NN poten-
tials in the spin-triplet states forr > 1.2fm, see Fig. 2 (middle) for the P-wave case. This assumption

1There is no reference. According to R. Serber [2] the name "Serberforce" was coined by E. Wigner around 1947.
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Figure 1: Wigner symmetry. Left:NN potentials in the1S0 and3S1 channel. Middle:1S0 NN phase shift.
Right:3S1 NN phase shift. Potentials are similar forr > 2fm but phase shifts are differenteverywhere.
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Figure 2: Serber symmetry. Left: pn differential cross section takenfrom an average of the Nijmegen
database (nn.online.org). Middle: P-wave spin singlet andspin triplet potentials. Right: Deuteron photodis-
integration as a function of the photon energy based on vanishing 3P-wave interactions.

can also be tested by looking at Deuteron photodisintegration,γd → pn, dominated above thresh-
old by theE1 transition3S1 →3 P. Neglecting tensor force and meson exchange currents (MEC)
the cross section for a normalized deuteron stateud(r) with binding energyBd reads [6]

σE1(γd → pn) =
απ
3p

(p2 +2µpnBd)
∣
∣
∣

∫ ∞

0
drud(r) r u3P(r)

∣
∣
∣

2
(3.2)

with Eγ = Bd + p2/(2µpn). For a free spherical P-waveu3P(r) = pr j1(pr), the agreement is good
usingud(r) from effective range (ER) theory [6] or from a potential [3] (POT),see Fig. 2 (right).

A further hint for Serber symmetry comes from the late 50’s Skyrme proposal [7] to introduce
a pseudopotential representing the NN effective interaction in nuclei in theform

Veffective(p′,p) = t0(1+x0Pσ )+ t1(1+x1Pσ )(p′2 +p2)+ t2(1+x2Pσ )p′ ·p+ . . . (3.3)

with Pσ = (1+ σ1 ·σ2)/2 the spin exchange operator.Pσ = −1 for spin singletS= 0 andPσ = 1
for spin tripletS= 1 states. Serber symmetry corresponds to takex2 = −1 in the P-wave term,
p′ ·p. Mean field theory calculations fitting single nucleon states yieldx2 = −0.99 [8].
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4. Renormalization and Long Distance Symmetry

In the meson exchange picture [9] the NN interaction can be decomposed asthe sum

V(x) = Vshort(x)+Vlong(x) (4.1)

where the short range and scheme dependent piece is given by distributional contact terms

Vshort(r) = C0δ (~x)+C2{∇2,δ (~x)}+ . . . , (4.2)

whereas the long distance pieceVlong(x) is scheme independent and usually produces power diver-
gences∼ 1/rn at short distances. We introduce a short distance cut-off,rc, which will be removed
in the end2. LDS means that even ifV1S0

(r) = V3S1
(r) for any r > rc one hasC0,1S0

6= C0,3S1
. We

analyze the implications by looking at finite energyS−wave scattering states

up(r) = up,c(r)+ pcotδ0(p)up,s(r) → cos(pr)+cotδ0(p)sin(pr) , (4.3)

wherep =
√

2µpnE is CM momentum. Forp→ 0 thenδ0(p) →−α0p and zero energy states are

u0(r) = u0,c(r)−u0,s(r)/α0 → 1− r/α0 , (4.4)

Hereup,c(r), up,s(r), u0,c(r) andu0,s(r) depend onV(r) only. Orthogonality inrc ≤ r < ∞ requires

0 =
∫ ∞

rc

dr

[

u0,c(r)−
1

α0
u0,s(r)

][

up,c(r)+ pcotδ0(p)up,s(r)
]

. (4.5)

Note that the potentialV(r) and the scattering lengthα0 are independent variables. Thus we
assume Wigner symmetry for the potentialV1S0

(r) =V3S1
(r) but experimentally different scattering

lengthsα1S0
= −23.74fm andα3S1

= 5.42fm, yielding from Eq. (4.5) the structure forrc → 0,

pcotδ1S0
(p) =

α1S0
A (p)+B(p)

α1S0
C (p)+D(p)

, pcotδ3S1
(p) =

α3S1
A (p)+B(p)

α3S1
C (p)+D(p)

, (4.6)

showing that a symmetry of the potential for anyr > rc, rc → 0, is notnecessarily a symmetry of
the S-matrix. The result forπ +σ exchange, while not exact, works rather well (see Fig. 1).

5. Sum rules

Based on the LDS idea we have recently derived the sum rules for phaseshifts [3, 4]

δ3L(p) = δ1L(p) all L
︸ ︷︷ ︸

Wigner

, δ3L(p),δ1L(p) = 0 oddL
︸ ︷︷ ︸

Serber

, (5.1)

where we have defined the multiplet centerδ ST
L = 1/(3(2L + 1))∑L+1

J=L−1(2J+ 1)δ ST
LJ . From data

Fig. 3 shows that one has Wigner forevenL and Serber for tripletodd L. The LDS character
accommodates the symmetry for increasingp andL; what matters is the impact parameter,b∼ L/p.

The previous sum rules have a parallel long distance potential analog , and are also well
verified for r > 1.5fm [4]. This suggests that a coarse graining of the interaction using e.g.
the Vlowk potentials [11] works and justifiesper sethe symmetry obtained phenomenologically
by fitting single particle states [8] for the Skyrme effective force, Eq. (3.3), [4]. We find that
V3L,lowk(p, p) ≪V1L,lowk(p, p) for (−1)L = −1 andV3L,lowk(p, p) ∼V1L,lowk(p, p) for (−1)L = 1.

2The constantsC0, C2 etc. are scale dependent. The equivalence with momentum space renormalization is shown
in Ref. [10] where the limitrc → 0 implies the irrelevance ofC2 in the presence of a singular chiral potential.
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Figure 3: Phase shifts sum rules based on spin-orbit and tensor force breaking to first order. Wigner sym-
metry is verified only by even-L states while Serber symmetryis verified only by spin triplet odd-L waves.

6. Large Nc nucleon-nucleon potentials

As it is well known, in the largeNc limit with αsNc fixed, nucleons are heavy,MN ∼ Nc [12],
and the NN potential∼ Nc becomes meaningful. The amazing aspect is that the symmetry pattern
of the sum rules for the old nuclear Wigner and Serber symmetries largely complies to the largeNc

and QCD based contractedSU(4)C symmetry [13, 14] where the tensorial spin-flavour structure is

V(r) = VC(r)+ τ1 · τ2[σ1 ·σ2WS(r)+S12WT(r)] ∼ Nc (6.1)

Other operators areO(N−1
c ) and hence suppressed by a relative 1/N2

c factor. One has the sum rules

V1L(r) = V3L(r) = VC(r)−3WS(r)+O(N−1
c ) , (−1)L = +1 (6.2)

V1L(r) = VC(r)+9WS(r)+O(N−1
c ) , (−1)L = −1 (6.3)

V3L(r) = VC(r)+ WS(r)+O(N−1
c ) , (−1)L = −1 (6.4)

Thus, largeNc impliesWigner symmetryonly in even-L channels, exactly as observed in Fig. 3.
Serber symmetry is possible but less evident (see [4]). This suggests to use largeNc itself and
its contracted spin-flavour groupSU(4)C as a long distance symmetry. Actually, the energy inde-
pendent potential may be obtained in a multi-meson exchange picture consistently with large Nc

counting rules [15]3. Retaining one boson exchange (OBE) withπ,σ ,ρ andω mesons one has

VC(r) = −g2
σNN

4π
e−mσ r

r
+

g2
ωNN

4π
e−mω r

r
, (6.5)

WS(r) =
g2

πNN

48π
m2

π
Λ2

N

e−mπ r

r
+

f 2
ρNN

24π
m2

ρ

Λ2
N

e−mρ r

r
, (6.6)

WT(r) =
g2

πNN

48π
m2

π
Λ2

N

e−mπ r

r

[

1+
3

mπ r
+

3
(mπ r)2

]

−
f 2
ρNN

48π
m2

ρ

Λ2
N

e−mρ r

r

[

1+
3

mρ r
+

3
(mρ r)2

]

,(6.7)

whereΛN = 3Mp/Nc andgσNN,gπNN, fρNN,gωNN∼
√

Nc andmπ ,mσ ,mρ ,mω ∼N0
c . To leading and

subleading order inNc one may neglect spin orbit, meson widths and relativity. The tensor force
WT is singular at short distances∼ 1/r3 and requires renormalization (see [17] for theπ case).

3The LDS character implies relaxing the contact interaction piecenot to be of the same form as the long distance
potentials, i.e.Vshort(~x) 6= (CC + τ1 · τ2[σ1 ·σ2CS+S12CT ])δ (~x) avoiding the extra symmetry,τaσi →−τaσi [16].
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Table 1: Deuteron properties for renormalized largeNc OBE potentials. We useγ =
√

2µnpBd with Bd =

2.224575(9) and takegπNN = 13.1083,mπ = 138.03MeV,mρ = 770MeV,mω = 782MeV. A fit to the1S0

phase shift givesmσ = 501MeV andgσNN = 9.1 [18]. πσρω usesfρNN = 15.5 andgωNN = 9.857 while
πσρω∗ usesfρNN = 17.0 andgωNN = 10.147. Experimental or recommended values from Ref. [19].

γ(fm−1) η AS(fm−1/2) rm(fm) Qd(fm
2) PD 〈r−1〉

π([17]) Input 0.02633 0.8681 1.9351 0.2762 7.88% 0.476

πσ Input 0.02599 0.9054 2.0098 0.2910 6.23% 0.432

πσρω Input 0.02597 0.8902 1.9773 0.2819 7.22% 0.491
πσρω∗ Input 0.02625 0.8846 1.9659 0.2821 9.09% 0.497

NijmII([5]) Input 0.02521 0.8845(8) 1.9675 0.2707 5.635% 0.4502
Reid93([5]) Input 0.02514 0.8845(8) 1.9686 0.2703 5.699% 0.4515

Exp. ([19]) 0.231605 0.0256(4) 0.8846(9) 1.9754(9) 0.2859(3) 5.67(4)

Deuteron properties are shown in Table 1 for parameters always reproducing the1S0 phase shift,
Fig. 1 (middle). Space-like electromagnetic form factors in the impulse approximation [20] for
Gp

E(−q2) = 1/(1+q2/m2
ρ)2 and without MEC are plotted in Fig. 4 (see [21] for theπ case). Over-

all, the agreement is good forrealistic couplings4. The inclusion of shorter range mesons induces
moderate changes, due to the expected short distance insensitivity embodied by renormalization,
despitethe short distance singularity andwithout introducing strong meson-nucleon-nucleon ver-
tex functions. In practice convergence is achieved forrc ∼ 0.3fm. Our calculation includes only
the OBE part of the leadingNc potential but multiple meson exchanges could also be added [15].

For largeNc, the central potential is leading, Eq. (6.5). Energy independent potentials using
power counting within Chiral Perturbation Theory (ChPT) [22] yield a central forceVChPT

C only to
O(1/ f 4

π MN) i.e. N2LO and ChPT potentials do not scale properly withNc sincegA ∼Nc, fπ ∼
√

Nc

and there are terms scaling asVChPT
2π ∼ g4

A/ f 4
π ∼ N2

c and not as∼ Nc, even after inclusion of∆ [23].
Moreover, Wigner and Serber symmetries are violated at long distances since

VChPT
2π (r) = (1+2τ1 · τ2)

e−2mπ r

r
3g4

Am5
π

1024f 4
π MNπ2 + . . . (6.8)

These features might perhaps explain why renormalizing ChPT potentials in different schemes a
mismatch of 100 at p = 400MeV for the1S0 phase shift is persistently obtained [24, 25, 10, 26].

7. Conclusions

Wigner and Serber symmetries in the NN system are realized as long distance ones and are
largely compatible with the largeNc picture. When largeNc NN-potentials are saturated byπ,σ ,ρ
andω exchange and subsequently renormalized, we obtain satisfactory resultsfor the deuteron and
central partial waves. This suggests that largeNc potentials might eventually provide a workable
scheme, less directly related to ChPT but closer in spirit to the common wisdom ofNuclear Physics.

4The Goldberger-Treiman relation givesgπNN = gAMN/ fπ = 12.8 for pions andgσNN = MN/ fπ = 10.1 for scalars
for fπ = 92.3MeV andgA = 1.26. Sakurai’s universality and KSFR yieldgρNN = gρππ/2 = mρ/ fπ/

√
8 = 2.9. From

SU(3) we havegωNN = 3gρNN−gφNN = 8.7 using OZI rule,gφNN = 0. ρ−meson dominance yieldsfρNN = κρ gρNN

with κρ = µp−µn−1= 3.7 with µp = 2.79 andµn =−1.91. Addingρ ′,ρ ′′ states yieldsκρ = 6.1 and thusfρNN = 18.
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Figure 4: Deuteron charge (left), magnetic (middle) and quadrupole (right) form factors. See also Table 1.
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