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1. QCD in the continuum

QCD is a remarkable theory. At short distances, thanks to asymptotiofreegliarks move
as though they are free. There probed in hard scattering processemwise perturbation theory,
make predictions and find that these agree with experiment. Howevergarldistances, distance
scales of the size of a hadron, the interaction becomes strong. This isgiba that controls
confinement, the dynamical generation of mass and the binding of quark&éohadrons [1, 2].

To illustrate the methods and how they work, let us consider the problem sfgeasration [3,
1]. We know that at short distances, tlyganddownquarks not only behave as though they barely
interact, but are almost massless too. What we have learnt is that over ldistances strong
dynamics creates correlations in the vacuum that generates a mass o&800rbksing the quarks
to become “constituent” quarks. We, of course, know that such dynhigéceration of mass
must be a strong physics phenomenon, because in perturbation thedrgrd eass is zero, then
the mass is zero to all orders in the coupling. Moreover, since zero masdgsawill not fit
on a finite size lattice, we know we have to study how masses are generateddarnttnuum.
To understand when this can happen, we consider the SchwingenBygga@mtion (SDE) for the
fermion propagator in a gauge theory.

The SDEs are the field equations of the theory, Fig. 1. The fermion pat@age(p), in
momentum space depends on two functions, its wavefunction renormaliggtprand its mass
function,M(p):

__F
S(p) = oM (1.1)

Solving the SDE for the fermion, Fig. 1, requires knowledge of the bosopggator and the full
fermion-boson interaction. In QED, where the equations are simpler toarawrig. 1, the photon
propagator depends on the very same full fermion propagator and fefsogpn vertex. So one
can imagine solving the coupled equations for the two propagators (anfpoctions), provided
we know the 3-point vertex. But this in turn satisfies an SDE, again showiyginl, that relates
the 3-point function to the 2, 3 and 4-point functions, and the 4-pointtfon is related to the
2, 3, 4 and 5-point functions, and so ad infinitum Consequently, we have an infinite tower of
coupled equations that we cannot solve without some truncation. Thé&rmgh approximation
is to expand each Green’s function in powers of the coupling. This gisggerturbation theory,
which satisfies gauge invariance and multiplicative renormalizability at eatdr of truncation.
While both the fermion and boson equations each involve two functions (ag ih B), the 3-point
equation contains 12 equations, and the tower becomes increasingly complex

To see how to proceed, let us start by butchering the fermion equatiorcai/eut this off
from the “tower” by treating the photon propagator and the vertex as leangng just the fermion
propagator as dressed. We can then perform the angular integrgtsaect out the functions
andM to obtain [1] in any covariant gaude

M(p) _ o (k) KIM(k)

Flp) ~ ™ T 43T /dk2p2k2+l\/| / dk2k2+M(k)2 » (12)
1wl [P LK FK F(k)
F(p)_1+4r[[/ dkzam* . dkzm (1-3)
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Figure 1: Schwinger-Dyson equations in QED for the fermion and bosopamators and their interaction.
The solid dots denote full Green’s functions.

Of course, this is not a calculation of a realistic situation. The photon beirg thee couplinggg,
does not run and there is no intrinsic scale. Consequently, in Egs. (3)2y& have introduced a
cutoff k on the integrals. This sets the scale prior to renomalization. Looking at theatats we
see that, if we work in the Landau gauge with= 0, Eq. (1.3) simplifies further witk = 1. This
leaves the mass equation, Eq. (1.2), which always has the soMtie® if the bare massypy = 0.
But when can a non-zero mass function be generated? If the couplilggeisdugh, a mass function
that looks qualitatively similar to those in QCD, shown in Fig. 2, can indeed tnedfonon-zero
in the infrared and then dying away at larger momenta. Such solutions oppehaf the fixed
couplingag > /3. Thus, if the interaction is strong enough, a mass can be generatedvétoif
we now solve Egs. (1.2, 1.3) in other covariant gauges, we see the safitattye behaviour, but
this happens at different values of the coupling. This tells us our ajppadion, in particular the
use of a bare interaction, does not respect gauge invariance. Bkcthe Ward-Green-Takahashi
identity (WGT]I) [4], which relates a projection of the fully dressed 3-pdimiction to the inverse
of the fermion propagator, is a key consequence of gauge invariaatcthéhbare vertex does not
satisfy, except in massless, quenched QED. What we have learntromecades of study [1]
is that imposing the WGTI together with the requirement of multiplicative renornializgapulls
through from the tower of SDESs just what is required to obtain physicallyningéul results.

This is the technology that we take to the study of QCD, together with the exjpecthat
dynamical mass generation will occur when the coupling is strong.
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2. First studies in strong coupling QCD

The field equations of QCD are of course more complicated than QED, ingohah only
the self-interaction of gluons, but in covariant gauges also ghosts. Aoriemg Slavnov-Taylor
identity [5] is that relating the 3-gluon interaction to the inverse propagattiveofluon. In axial
gauges this is particularly simple, and was the starting point for the analy8akefr, Ball and
Zachariasen (BBZ) [6]. Though in axial gauges there are no ghbstgluon propagator depends
on two independent functions. BBZ made an approximation that only oneeeétls relevant,
but this was shown by West [7] to be inconsistent in the infrared regiams€quently, attention
turned to covariant gauges, in particular the Landau gauge, wherduthe gropagator depends
on just one functiom\(g?). The corresponding Slavnov-Taylor identity for the dressed 3-gluon
interaction now involves ghost functions. The first studies 25-30 yagwsset these to one, and
assumed that the role of ghosts was merely to ensure the physical gluomdrarsverse, but
otherwise their effect was negligible/neglectable. Only gluon dressingdeasied required for
confinement dynamics. These studies started independently with Pagéaj8elstam [9] and
Bar-Gadda [10], and indicated that the gluon propagator became gifmgthe infrared. The first
major numerical study was performed by Nick Brown and myself [11] mora thénty years
ago, which showed how the gluon enhancement was correlated\wiih, and that the addition
of generations of massless quarks softened this enhancement. Thecstuping was enhanced
in the infrared, but merged with standard perturbation theory above &fwW Such behaviour
generates dynamical masses for tipanddownquarks, as shown by Maris and Roberts [12]. In
Fig. 2 is plotted the behaviour of the quark mass function for a range mdrumasses [13] from 3
to 100 MeV. In each case the “current” quarks are dressed by pB8B MeV of mass at infrared
momenta to emerge as “constituent” quarks, the scale being gesdry. Having these solutions
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Figure 2: Euclidean mass functions labelled by their current magsesified atu = 19 GeV covering the
range appropriate for the 3 lightest flavours of quark andcthigal limit. These results from Ref. [13] are
essentially the same as those obtained earlier by Maris abhdri® [12] covering a bigger range of masses
required for 5 flavours, relevant to the discussion in Sect. 3
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in the continuum, we can take the current mass to zero and so determine #idictiir Then
matching the behaviour in Fig. 2 to the Operator Product Expansion atriaogeenta, we learn
this corresponds to a non-zero chiral condensate {gjtho = —(240MeV)3 [12], in agreement
with experiments on low energyrt scattering [14, 15].

For later, we note that the results for the quark mass funchbis of Fig. 2 and their exten-
sion to GeV current masses [12], can be parametrised by

Noco
M(p)‘M°+°p2+/\éCD : (2.1)
if we simply ignore the anomalous dimensioiy is the current mass,a dimensionless constant
fixed from Fig. 2, and wher@qcp sets the scale for the infrared dressing andijipeondensate.
How is an infrared enhanced gluon related to confinement? The interaeiioedn quarks
and antiquarks is given by an infinite set of gluon exchange graphaevés, if we consider the
infinite quark mass limit, then all those with internal quark propagators aneresged and the
quark-gluon vertex becomes bare. This is the basis of “Heavy Quéktire Theory”. Then the
interquark potential is generated by one gluon exchange, and the stiigigh/ (r) in position
space is just the Fourier transform of the time-time component of the drgiseam propagator,
A(q). This generates a wholly vector potential and so must be modified for pthyBidte mass
quark effects. For heavy quarks, it is just a matter of dimensional daatysee that the behaviours

V(r) ~r®  and A(g) ~q3? (2.2)

are correlated whegr ~ 1. This naturally accords with expectation at large momenta when the
gluon is essentially free, behaving lik¢d®, i.e. a= —1. This corresponds to a Coulomb-like
potential at short distances. If at larger distances the potential is tolgrearly with r, then this
static approximation requirés(q) ~ 1/q* for q < 1. Neglecting ghosts this is just what happens.

3. Tubingen/Graz/Darmstadt studies of QCD

The next group to pursue intensive studies started in Tubingen, buwwidispersed all over the
globe, with von Smekal, Alkofer, Fischer and collaborators [16, 17kyT$howed that ghosts do
play an important role. Itis ghosts that become enhanced in the infrandd,tine gluon propagator
with its physical transverse polarisations is suppressed. In this “scaloigtion, the behaviour of
the ghost and gluon are correlated, Fig. 3, so that the effective cgupticomes enhanced with
a finite value in the infrared. A major effort has been undertaken to ctieckonsistency of the
tower of SDEs in the deep infrared,g.[18]. While mathematically well defined these studies
probe the behaviour of the Green's functions when the hadron weiisrmore than 10 fermis
large, Fig. 3. However, the physics of hadrons only depends on Q@Bndics from 0.1 to at
most 2 fermis. There the enhancement of the coupling is expected to leaddmidyl chiral
symmetry breaking, as in the studies where ghosts were neglected. Thisdrashown explicitly
in Ref. [19]. Key to these studies is the non-trivial structure of the gghukn interaction with
a crucial scalar component generated by the contribution of the ghgstideg. 4. In the limit
in which the two fermion momenta, p/, are small, one would expect the contribution of such a
graph to depend on the quark mass as sketched in Eq. (3.1):
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Figure 3: Log-log plots of (a) the gluon and ghost renormalizationctions, and (b) the quark mass func-
tions from the studies in Refs. [17, 19].
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Figure 4: The ghost triangle claimed in Ref. [19] to enhance the qudumkn vertex even in the heavy quark
limit.

If the quark mass function behaves for heavy quarks as illustrated 2 Bigd given by Eq. (2.1),
then the corrections, Fig. 4, to the bare vertex would be like those in E{, §8@so be suppressed
in the infinite quark mass limit. However, Alkofet al.[19] find their quark mass functions have
a rather different behaviour — as shown on the right in Fig. 3. While tlzekspuall gain 300 MeV
of mass above thegurrentvalue in the phenomenologically important region of momenta of 0.1
to 1 GeV, the heavy quark masses decrease in the deeper infraredbehlaigour circumvents
the underpinning assumptions of the heavy quark limit discussed abowvearkably, Alkoferet
al. [19] then find that a potential growing linearly with distance emerges. bpeitl find the low
momentum behaviour of the “heavy” quark mass function of Fig. 3 rathert@zand demands
further investigation. However, we do see that in the region probed 8sohaghysics that this
modelling is just as likely as that with the enhanced gluon. This will be confirngezhlzulation
of hadron masses.

As yet another alternative, Mandula and Ogilvie [20] long ago propassdiution for the
gluon with an effective mass, and this has been more recently studied baPepal. [21]. Such
behaviour appears to be correlated with a finite infrared enhancemémt ghost, as found by
Boucaudet al. [22] in particular. Interestingly, this type of solution appears to be in quaigati
agreement with recent lattice results, for instance those of Ref. [23}elkr, these SDE solutions
have been dismissed by the proponents of the “scaling” solution [1§J{Xef. [24].
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An aim of this whole approach is to build hadrons and to be able to do this j@igat mass
quarks [25, 2]. Something lattice computations are just being able to studywikag the quark
and gluon propagators and their interactions allows us to solve the Boued &t8ethe-Salpeter)
equations (BSE). We start witlig systems. The key dynamics is provided by the quark scattering
kernel and most studies use the rainbow ladder approximation [25].t&esswvith pseudoscalar
quantum numbers satisfying the axial Ward identity is crucial [26, 27]. €hmures that in the
limit of zero mass quarks, the pion is massless with chiral symmetry dynamicakgrrd/ore-
over, pion-pion interactions have much of the essence of Chiral Patiwmbl'heory: not all, as the
kernels do not yet include a complete pseudoscalar nonet, but thissappeogetting there. The
masses of scalars are found to be sensitive to the details of the scattariey Kéonsequently,
the shape of scalar-pseudoscalar potential cannot yet be mappeftttoany confidence. How-
ever, vector bound states are more robust. @la@d T masses can be evaluated for a whole range
of quark masses with interactions modelled to reproduce the enhancedsgkrerio or the sup-
pressed gluon one [25, 28, 29], and both match the lattice results of CB-B®]. This highlights
how the SDE/BSE approach can continue lattice results with their unphysitaht quark masses
to those of the real world rather well, and that the SDE/BSE system entugl&sy strong cou-
pling dynamics that extends QCD perturbation theory into the confinementeeg and that this
does not depend critically on knowledge of the deep infrared.

One can of course use this same approach to study other dynamical gsait#igtromagnetic
form-factors are naturally first [31], where a simple impulse approximationtegustifiable. The
spacelike pion form-factor is the benchmark for the extensions of pattarttheory pioneered by
Brodsky and Lepage [32]. Studies in the SDE/BSE approach repeasiperiment and show the
perturbative limit is not reached befo@ ~ 50 Ge\2. More recently attention has turned to the
properties of baryons [31], an even more challenging problem reguarifull Fadeev treatment.
However, we can proceed more simply, and perhaps more profitablygtimgrthat having forms
for the quark and gluon Green’s functions allows us to study not just B ®r quarks and
antiquarks, but also for diquarks. Baryons are then built of diqgadek systems, and measuring
their electromagnetic transition form-factors with precision at JLab will pthbestrong coupling
regime and the predictions of the SDE/BSE treatment of QCD [33]. Such aplatebetween
theory and experiment promises instructive insight into how confinementib @ally works.

The author acknowledges partial support of the EU-RTN Programnratyd&d No. MRTN—
CT-2006-035482, “Flavianet” for this work.
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