
P
o
S
(
E
F
T
0
9
)
0
4
8

Unitarity constraints on chiral perturbative
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Low lying scalar resonances emerge as a necessary part to adjust chiral perturbation theory to
experimental data once unitarity constraint is taken into consideration. I review recent progress
made in this direction in a model independent approach. Also I briefly review studies on the
odd physical properties of these low lying scalar resonances, including in the γγ → π+π−,π0π0

processes.

International Workshop on Effective Field Theories: from the pion to the upsilon
February 2-6 2009
Valencia, Spain

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:zhenghq@pku.edu.cn�


P
o
S
(
E
F
T
0
9
)
0
4
8

Unitarity constraints on chiral perturbative amplitudes

Low lying scalar resonances emerge as a necessary part to adjust chiral perturbation theory to
experimental data when the constraint of unitarity is taken into consideration. This is most clearly
seen if one writes down a dispersion relation for sin(2δπ) where δπ is the ππ scattering phase shift
in the scalar–iso-scalar channel. The data exhibits a convex curvature below 1GeV whereas chiral
estimation to the nearby cut contribution is negative and concave – the huge gap between the two
can only be made up by including a pole contribution, according to the standard S–matrix theory
principal. [1] Unitarization of the chiral perturbative amplitude also predicts the existence of a light
and broad pole structure in the IJ=00 channel ππ scattering,nevertheless it was not very clear to
what extent one should trust the output of unitarized chiral perturbative amplitude.

In section 1 we briefly introduce a novel dispersion representation for partial wave amplitudes
developed in recent few years, [2, 3] and physical results read out from it, including a better un-
derstanding on the Padé unitarization approximation. In section 2 we discuss how one can get a
better understanding on chiral perturbation theory and resonance chiral perturbation theory (RχPT)
parameters based on the use of dispersion techniques. In section 3 we investigate studies on the
dynamical properties of the low lying scalar resonances. Finally in section 4 we introduce a recent
work on the γγ → ππ process. Based on which we find that the σ → γγ coupling is significantly
smaller than that of a naive q̄q assignment.

1. The PKU representation – a unitarized dispersion representation for elastic
scattering amplitudes

The S-matrix element of partial wave elastic scattering amplitude satisfies the following dis-
persive representation: [2, 3]

Sphy. = ∏
i

SRi ·Scut , (1.1)

where SRi denotes the i-th second sheet pole contribution and Scut denotes the contribution from
cuts except the elastic one. The information from higher sheet poles is hidden in the right hand
integral which consists of one part of the total background contribution. We have,

Scut = e2iρ f (s) ,

f (s) =
s
π

∫

L

ImL f (s′)
s′(s′− s)

+
s
π

∫

R

ImR f (s′)
s′(s′− s)

, (1.2)

where the ‘left hand’ cut L = (−∞,0] for equal mass scatterings and may contain a rather com-
plicated structure for unequal mass scatterings. The right hand cut R starts from first inelastic
threshold to positive infinity. It can be demonstrated that the dispersive representation for f is
free from the subtraction constant. [2] The PKU representation, Eq. (1.1), is sensitive to S ma-
trix poles not too far away from physical threshold, hence providing a useful tool to explore the
light and broad resonance σ and κ . In the data fit it is found that crossing symmetry plays an
important role in fixing the σ pole location. Taking this fact into account [3] it gives the σ pole
location at Mσ = 470± 50MeV , Γσ = 570± 50MeV , in good agreement with the determina-
tion using more sophisticated Roy equation analysis. [4, 5] The application of Eq. (1.1) to LASS
data [6] also unambiguously establish the existence of the κ meson with the pole location: [2]
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Unitarity constraints on chiral perturbative amplitudes

Mκ = 694±53MeV , Γκ = 606±59MeV , which are also in agreement with the later determina-
tion on κ pole parameters using Roy–Steiner equations. [7]

The dispersion representation Eq. (1) safely embeds chiral perturbative amplitudes into a uni-
tarized scheme. This property is not always trivial in the practice of unitarization. For example,
contrary to the input chiral perturbative amplitudes, Padé approximants lead to completely different
singularity structure in the vicinity of s = 0 – a region where the former ought to be trustworthy.
The reliability of χPT predictions in the small |s| region can be vividly seen in the I=2 s wave am-
plitude. One may use χPT result to estimate the contribution of the left hand cut to the scattering
length a2

0. The estimate is rough but gives a value qualitatively much larger in magnitude than a2
0

extracted from experiment. This difficulty is resolved, recalling that χPT also predicts a virtual
pole near s = 0, which contribution cancels a large amount of the cut contribution and leads to the
correct prediction of a2

0. This example further illustrate that the singularity structure as predict by
χPT in the vicinity of s = 0 is indeed reliable and self-consistent.

The PKU representation, Eq. (1.1) affords another interesting opportunity to study the relation
between resonance parameters and low energy constants of the chiral lagrangian. On the l.h.s. of
Eq. (1.1) one may replace Sphy. by χPT result at low energies, on the r.h.s. one does not know how
many resonances are there, nevertheless one may formally make a threshold expansion to match the
l.h.s.. In this situation the cut integrals in Eq. (1.2) are however difficult to calculate. So we firstly
neglect completely the cut integrals and assuming there is only one pole on the r.h.s. of Eq. (1.1).
Under this approximation we can get a prediction on the resonance parameters expressed in terms
of the low energy constants. It is shown in Ref. [8] that the pole location is exactly the same as
the prediction of [1,1] Padé amplitude in the large Nc and chiral limit. In my knowledge there had
never been serious examination on what does the predictions of Padé approximation mean in the
literature. Hence Ref. [8] provides a first understanding on this question: in the large Nc and chiral
limit the pole location as predicted by [1,1] Padé approximant is equivalent to the approximation
that: 1) neglecting crossed channel cut completely, 2) assuming single pole dominance in the s
channel. However, in Ref. [9] it is shown that crossed channel cut contributions are not negligible.
A direct consequence of neglecting the cut contribution is the violation of crossing symmetry as
will be discussed in the next section.

2. Matching between two expansions

Threshold expansion on both sides of Eq. (1.1) (the l.h.s. replaced by SχPT ) could provide
useful relations between resonance parameters and low energy constants, if one can reliably esti-
mate cut integrals in some way. Fortunately, this can indeed be done in the large Nc limit. In such a
limit the Eq. (1.1) leads to the same result as the partial wave dispersion relation. Hence Eq. (1.1)
can actually be understood as a simple combination of single channel unitarity and partial wave
dispersion relation. [9]

The matching results in a set of relations at different chiral order.
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Unitarity constraints on chiral perturbative amplitudes

T (0) t tR
0 tsR

0 tχPT
0 = mπaI

J

IJ = 11 − m2
π

24π f 2
4ΓS
9M3

S
+ 2ΓV

M3
V

4ΓV
M3

V
0

IJ = 00 − m2
π

32π f 2 − 4ΓS
3M3

S
+ 36ΓV

M3
V

4ΓS
M3

S

7m2
π

32π f 2

IJ = 20 m2
π

16π f 2 − 4ΓS
3M3

S
− 18ΓV

M3
V

0 − m2
π

16π f 2

Table 1: Summary of the different contributions T (0), cross channel resonance exchange contribution t tR
0 ,

and s-channel resonance contribution tSR
0 to the scattering lengths at leading order in the m2

π expansion.
The generalized KSRF-relation derives from the matching of the sum of the first three columns to the χPT
prediction, tχPT

0 . In the last line, T (0) contains the sum of−|T (0)| and the IJ = 20 virtual pole contribution.

At O(p2):

1
16π f 2 =

9Γ(0)
V

M(0)3
V

+
2Γ(0)

S

3M(0)3
S

, (2.1)

It is remarkable to notice that three different channels produce the same results. The conclusion is
that partial wave amplitudes remember crossing symmetry. It is interesting to compare Eq. (2.1)
with the old version of the so called KSRF relation:

1
16π f 2 =

6Γ(0)
V

M(0)3
V

. (2.2)

In the IJ=11 channel, one may obtain Eq. (2.2) if neglecting crossed channel vector and scalar
exchanges, see table 1 for illustration. [9]

At O(p4):

L2 = 12π f 4 Γ(0)
V

M(0)5
V

, L3 = 4π f 4

(
2Γ(0)

S

3M(0)5
S

− 9Γ(0)
V

M(0)5
V

)
. (2.3)

It is remarkable to notice that the Eq. (2.3) rewrites the old results of Ref. [10] without even know-
ing how to write down an effective resonance chiral lagrangian!

At O(m2
π p2):

Matching at this order led to a novel relation any lagrangian model has to obey, which is a
consequence of high energy constraint combined with chiral symmetry:

0 =
2
3

Γ(0)
S

M(0)5
S

[αS +6] +
9Γ(0)

V

M(0)5
V

[αV +6] . (2.4)
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Unitarity constraints on chiral perturbative amplitudes

The physical widths and masses, ΓR and MR, carry an implicit dependence on m2
π , which can be

expressed in the form
ΓR

M3
R

=
Γ(0)

R

M(0)3
R

[
1 + αR

m2
π

M(0)2
R

+ O
(
m4

π
)
]

. (2.5)

The matching project has been further extended to O(p6) and interesting results are obtained, [11] I
refer to the talk given by Sanz–Cillero in this conference for details. Based on these new formulas,
Guo and Sanz–Cillero made a systematic re-estimation to the coupling constants in O(p6) chiral
lagrangian in a model independent way. [12]

3. On the nature of the f0(600) pole

It has long been argued that the f0(600) pole is the σ meson of linear σ (-like) model. [13]
Nevertheless due to its strong interaction nature, it is very difficult to solve this problem at funda-
mental level. On the other side, it is argued using the inverse amplitude method or chiral unitariza-
tion approach, that the f0(600) pole is a ‘dynamically generated’ resonance. [14] Yet the wording
‘dynamically generated’ itself needs clarification, [15] it can be understood from the discussion in
section 1 and Refs. [16, 8] that in the approach of unitarization of chiral perturbative amplitudes the
f0(600) pole does fall back to the real axis in the large Nc limit. Hence one has to put it explicitly
in the lagrangian in the very beginning, therefore being ‘fundamental’. The odd pole trajectory of
f0(600) with respect to the variation of Nc was used to argue its dynamical nature. Nevertheless
it is shown, using a solvable O(N) linear σ model, that the ‘fundamental’ σ pole trajectory looks
indeed being odd. [17] One may expect that the study of other light scalar resonances like κ(700),
f0(980) and a0(980) could shed some light on the understanding of f0(600). However, the inclu-
sion of these resonances does not seem to be very helpful up to now, if not merely making the
situation more complicated.

4. The γγ → ππ process in a partially couple channel approach

There remains the hope in understanding better the property of f0(600) through the study on
the γγ → π+π−,π0π0 process, as emphasized by Pennington, [18] since the di-photon coupling
of a resonance may be used as probe to investigate hadron internal structure at quark level. Again
unitarity plays a crucial role in such investigations. However the σ pole locates quite far away
from the physical region, the di-photon coupling extracted as such is found not very stable. This
problem is reinvestigated recently, [19] where the fit to data at first step is up to 1.4GeV, aiming at
fixing the d-wave background. Then a refined analysis is made by fitting data up to 0.8GeV, using
the ππ scattering T matrix obtained in Ref. [3]. The fit quality can seen in fig. 1 borrowed from
Ref. [19]. In this way the two photon decay width is obtained to be Γ(σ → γγ)' 2.1KeV, a result
significantly smaller than that expected from a naive q̄q model calculation. This further stresses
the unconventional nature of the f0(600) nature except the large width it has. The value of σππ
coupling is also given in Ref. [19], g2

σππ = (−0.20− 0.13i)GeV2, which is compatible with the
value given in Ref. [22]: g2

σππ = −0.25− 0.06iGeV2 which was used by the authors of Ref. [23]
to argue in favor of the gluonium nature of f0(600). It is interesting to notice that, for a narrow
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Figure 1: A fit up to 0.8GeV using single channel s-wave T matrices of Ref. [3], with only one fit parameter.
The π+π− and π0π0 data are from Refs. [20] and [21], respectively. Dashed curve represents d-wave
background, solid curve represents the total contributions, including the I=0 s–wave to be fitted.

resonance Re[g2
σππ ] should be positive, otherwise it would be a ghost rather than a particle and

violates probability conservation. Nevertheless for a broad resonance this constraint does not need
to hold anymore. The negative Re[g2

σππ ] indicates another peculiarity of f0(600).
To conclude, the correct use of unitarity, when combined with chiral symmetry, plays a pow-

erful role in studying resonance physics, especially the property of the light and broad f0(600).
However, there still remains many interesting and mysterious characters of f0(600) waiting to be
resolved in future.
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